Journal of Materials Science

, Volume 44, Issue 1, pp 149–153 | Cite as

Bismuth redistribution induced by intermetallic compound growth in SnBi/Cu microelectronic interconnect

  • C. Z. LiuEmail author
  • W. Zhang


It was found that Bi particles, with a diameter of 100 nm, precipitated along Cu3Sn/Cu interface and Bi crystallites dispersed in Cu3Sn layer in 42Sn58Bi/Cu microelectronic interconnect, when it was aged at 120 °C for 7 days. The mechanism for Bi redistribution like this was discussed. Cu6Sn5 turned into Cu3Sn by Cu diffusion that is dominant in Sn/Cu inter-diffusion during the aging process. Bi precipitation occurred in Cu3Sn due to lower Bi solubility in Cu3Sn than that in Cu6Sn5. The Bi precipitates can traverse the formed Cu3Sn quickly toward the Cu3Sn/Cu interface, attributed to the Kirkendall effect. They stayed and nucleated there to form particles, owing to their unwettability on Cu. The formed Cu3Sn got oversaturated with Bi, when the joint cooled from 120 °C to room temperature. Then Bi crystallites precipitated dispersedly in Cu3Sn layer.


Solder Joint Solder Alloy Diffusion Flux Reflow Process Cu3Sn Phase 



The authors would like to thank Prof. K. Lu, Prof. Zh. G. Wang, Prof. D. X. Li, Prof. M. L. Sui at Institute of Metal Research, Chinese Academy of Sciences, and Dr. J.K. Shang at University of Illinois at Urbanna-Champaign (UIUC) USA, for their kind help and discussions. The constructive comments from Prof. K. N. Tu at University of California, Los Angeles (UCLA), USA, were greatly appreciated.


  1. 1.
    Abtew M, Selvaduray G (2000) Mater Sci Eng R 27:95CrossRefGoogle Scholar
  2. 2.
    Tu K, Zeng K (2001) Mater Sci Eng R 34:1CrossRefGoogle Scholar
  3. 3.
    Laurila T, Vuorinen V, Kivilahti JK (2005) Mater Sci Eng R 49:1CrossRefGoogle Scholar
  4. 4.
    Vianco P, Hlava P, Kilgo A (1994) J Electron Mater 23:583CrossRefGoogle Scholar
  5. 5.
    Vianco P, Kilgo A, Grant R (1995) J Electron Mater 24:1493CrossRefGoogle Scholar
  6. 6.
    Liu C, Zhang W, Sui M, Shang J (2005) Acta Metall Sin 41:847Google Scholar
  7. 7.
    Liu P, Shang J (2001) J Mater Res 16:1651CrossRefGoogle Scholar
  8. 8.
    Liu P, Shang J (2001) Scr Mater 44:1019CrossRefGoogle Scholar
  9. 9.
    Liu P, Shang J (2005) Scr Mater 53:631CrossRefGoogle Scholar
  10. 10.
    Shang J, Liu Z, Li D, Shang J (2008) Scr Mater 58:409CrossRefGoogle Scholar
  11. 11.
    Menyhard M, Blum B, Mcmahon C (1989) Acta Mater 37:549CrossRefGoogle Scholar
  12. 12.
    Schweinfest R, Paxton A, Finnis M (2004) Nature 432:1008CrossRefGoogle Scholar
  13. 13.
    Albert U, Mullejans H, Ruhle M (1999) Acta Mater 47:4047CrossRefGoogle Scholar
  14. 14.
    Chakrabarti D, Laughlin D (1990) In: Massalski T, Okamoto H, Subramanian P, Kacprzak L (eds) Binary alloy phase diagrams, 2nd edn. ASM International, Materials Park, OH, p 733Google Scholar
  15. 15.
    Zhang W, Liu C, Li D, Sui M (2004) Adv Eng Mater 4:232CrossRefGoogle Scholar
  16. 16.
    Tu K (1973) Acta Metall 21:347CrossRefGoogle Scholar
  17. 17.
    Tu K, Thompson R (1982) Acta Metall 30:947CrossRefGoogle Scholar
  18. 18.
    Tu K (1996) Mater Chem Phys 46:217CrossRefGoogle Scholar
  19. 19.
    Mei Z, Sunwoo AJ, Morris JW (1992) Metall Trans A 23:857CrossRefGoogle Scholar
  20. 20.
    Sunwoo AJ, Morris JW, Lucky GK (1992) Metall Trans A 23:1323CrossRefGoogle Scholar
  21. 21.
    Saunders N, Miodownik A (1990) In: Massalski T, Okamoto H, Subramanian P, Kacprzak L (eds) Binary alloy phase diagrams, 2nd edn. ASM International, Materials Park, OH, p 1482Google Scholar
  22. 22.
    Sakamoto I (2005) IEEE Trans Electron Packag Manuf 28:10CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Shenyang Institute of Aeronautical EngineeringShenyangChina
  2. 2.Institute of Metal Research, Chinese Academy of SciencesShenyangChina

Personalised recommendations