Journal of Materials Science

, Volume 44, Issue 1, pp 64–73 | Cite as

Phase selection in supercooled Cu–Nb alloys

  • A. MunitzEmail author
  • M. Bamberger
  • A. Venkert
  • P. Landau
  • R. Abbaschian


Electromagnetic levitation was used to determine Cu–Nb phase diagram and to study supercooling effects on solidification characteristics of the alloys containing 5–70 wt% Nb. The Cu–Nb stable phase diagram was found to exhibit near-flat liquidus with a peritectic reaction at 1093 °C. Melt separation was found only for specimens containing approximately 20 wt% Nb. The results indicate that melt separation in the alloy requires supercooling exceeding 230 K combined with high cooling rates during solidification. Some specimens quenched from the solid + liquid zone on a copper chill also show evidence of melt separation which is attributed to minor oxygen impurities. Nb-rich liquid which nucleates below the T0 curve solidifies as a metastable Nb-bcc lattice containing only 67 wt% Nb as compared to 96 wt% of the regular Nb dendrites.


High Cool Rate Peritectic Reaction Interdendritic Region Electromagnetic Levitation Elemental Microanalysis 


  1. 1.
    Zeik KL, Koss DA, Anderson IE, Howell PR (1992) Metall Trans A 23A:2159CrossRefGoogle Scholar
  2. 2.
    Verhoeven JD, Gibson ED (1978) J Mater Sci 13:1576. doi: CrossRefGoogle Scholar
  3. 3.
    Frommeyer G, Wassermann G (1975) Acta Metall 23:1353CrossRefGoogle Scholar
  4. 4.
    Bevek J, Harbison JP, Bell JL (1978) J Appl Phys 49:6031CrossRefGoogle Scholar
  5. 5.
    Popov IA, Shiryaeva NV (1961) Russ J Inorg Chem 6:1184Google Scholar
  6. 6.
    Allibert C, Driole J, Bonnier E (1969) Acad Sci Paris 268C:1579Google Scholar
  7. 7.
    Smith JF, Lee KJ, Baily DM (1984) Bull Alloy Phase Diagrams 5:1984Google Scholar
  8. 8.
    Chakrabarti, Laughlin (1982) Bull Alloy Phase Diagrams 2:455CrossRefGoogle Scholar
  9. 9.
    Elder SP, Munitz A, Abbaschian R (1989) Mater Sci Forum 50:137CrossRefGoogle Scholar
  10. 10.
    Munitz A, Elder S, Abbaschian GJ (1992) Metall Trans A 23A:1817CrossRefGoogle Scholar
  11. 11.
    Munitz A, Abbaschian R (1996) Metall Mater Trans A 27:4049CrossRefGoogle Scholar
  12. 12.
    Munitz A, Abbachian R, Cotler C, Shacham C (1996) J High Temp Mater Proc 15:187Google Scholar
  13. 13.
    Munitz A, Bamberger M, Wannaparhun S, Abbaschian R (2006) J Mater Sci 41:2749. doi: CrossRefGoogle Scholar
  14. 14.
    Munitz A, Abbaschian GJ, Talyanker M (1991) J Mater Sci 26:5195. doi: CrossRefGoogle Scholar
  15. 15.
    Munitz A, Abbaschian R (1986) In: Koch CC, Collings EW (eds) Undercooled alloy phases. The Metallurgical Society of AIME, New Orleans, Louisiana, March 2–6, p 23Google Scholar
  16. 16.
    Abbaschian GJ, Flemings MC (1983) Metall Trans A 14A:1147CrossRefGoogle Scholar
  17. 17.
    Li D, Robinson MB, Rathz TJ, Williams G (1998) Acta Mater 46:3849CrossRefGoogle Scholar
  18. 18.
    Kaufman L (1978) Calphad 2:117CrossRefGoogle Scholar
  19. 19.
    Baker JC, Cahn JW (1971) In: Solidification-papers presented at a seminar of the American Society for Metals, Oct 11–12, 1969, Metals Park, OHGoogle Scholar
  20. 20.
    Schelle RF (1971) MSc Thesis, Iowa stateGoogle Scholar
  21. 21.
    Munitz A, Abbaschian R (1998) Metall Trans A 33:3639Google Scholar
  22. 22.
    Mondolfo LF (1982) Grain refinement in casting and welds. In: Abbaschian R, David SA (eds) TMS-AIME Warrendale, PA, p 3Google Scholar
  23. 23.
    Clyne TW (1983) Metall Trans B 15B:369Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • A. Munitz
    • 1
    Email author
  • M. Bamberger
    • 2
  • A. Venkert
    • 1
  • P. Landau
    • 3
  • R. Abbaschian
    • 4
  1. 1.Nuclear Research Center-NegevBeer-ShevaIsrael
  2. 2.Materials Science and EngineeringTechnionTechnion City, HaifaIsrael
  3. 3.Materials Science and EngineeringBen-Gurion UniversityBeer-ShevaIsrael
  4. 4.College of EngineeringUniversity of CaliforniaRiversideUSA

Personalised recommendations