Journal of Materials Science

, Volume 44, Issue 1, pp 170–178 | Cite as

Thermal stability and thermal degradation kinetics of poly(ethylene 2,6-naphthalate)/poly(trimethylene terephthalate) blends

  • Yingjin WangEmail author
  • Haixian Ren
  • Wenya Liu
  • Mingtao Run
  • Hairong Zhang


The kinetics of thermal degradation of poly(ethylene 2,6-naphthalate)/poly(trimethylene terephthalate) (PEN/PTT) blends with different weight ratio were investigated by thermogravimetry analysis from ambient temperature to 800 °C in flowing nitrogen. The kinetic parameters, including the activation energy Ea, the reaction order n, and the pre-exponential factor ln(Z), of the degradation of the PEN/PTT blends were evaluated by three single heating rate methods and advanced isoconversional method developed by Vyazovkin. The three single heating rate methods used in this work include Friedman, Freeman–Carroll, and Chang method. The effects of the heating rate, the calculation methods, and the content of the PEN component on the thermal stability and degradation kinetic parameters of the PEN/PTT blends were systematically discussed. The PEN/PTT blends which degraded in two distinct stages were stable under nitrogen, also, the maximum rate of weight loss increased linearly with increasing of heating rate and decreased with increasing of PEN content. The obtained kinetics data suggested that the introduction of PEN component increased the activation energy, enhanced the stability of the blend system, and affected the process of degradation of PEN/PTT blend.


Thermal Degradation Chang Method Friedman Method Butylene Terephthalate Aromatic Carbon Atom 



This work was funded by Grant (B2007000148) from Natural Science Foundation of Hebei province.


  1. 1.
    Nakamae K, Nishino T, Tada K, Kannamoto T, Ito M (1993) Polymer 34:3322CrossRefGoogle Scholar
  2. 2.
    Van den Heuvel CJM, Klop EA (2000) Polymer 41:4249CrossRefGoogle Scholar
  3. 3.
    Whinfield JR, Dickson JT (1946) British Patent 578,079, 14 June 1946Google Scholar
  4. 4.
    Wu J, Schultz JM, Samon JM, Pangelinan AB (2001) Polymer 42:7141CrossRefGoogle Scholar
  5. 5.
    Grande JA (1997) Mod Plast 12:97Google Scholar
  6. 6.
    Yoon KH, Lee SC, Park OO (1995) Polym Eng Sci 35:1807CrossRefGoogle Scholar
  7. 7.
    Yu Y, Choi KJ (1997) Polym Eng Sci 37:91CrossRefGoogle Scholar
  8. 8.
    Supaphol P, Dangseeyun N, Thanomkiat P, Nithitanakul M (2004) J Polym Sci Polym Phys 42:676CrossRefGoogle Scholar
  9. 9.
    Dangseeyun N, Supaphol P, Nithitanakul M (2004) Polym Test 23:187CrossRefGoogle Scholar
  10. 10.
    Rwei SP (1999) Polym Eng Sci 39:2475CrossRefGoogle Scholar
  11. 11.
    Krutphun P, Supaphol P (2005) Eur Polym J 41:1561CrossRefGoogle Scholar
  12. 12.
    Run M, Wang Y, Yao C, Gao J (2006) Thermochim Acta 447:13CrossRefGoogle Scholar
  13. 13.
    Run M, Wang Y, Yao C, Zhao H (2006) J Appl Polym Sci 103:3316CrossRefGoogle Scholar
  14. 14.
    Friedman HL (1964) J Polym Sci Part C 6:183CrossRefGoogle Scholar
  15. 15.
    Freeman ES, Carroll BJ (1958) J Phys Chem 62:394CrossRefGoogle Scholar
  16. 16.
    Chang WL (1994) J Appl Polym Sci 53:1759CrossRefGoogle Scholar
  17. 17.
    Kissinger HE (1957) Anal Chem 29:1702CrossRefGoogle Scholar
  18. 18.
    Flynn JH, Wall LA (1966) J Polym Sci Part B 4:323CrossRefGoogle Scholar
  19. 19.
    Horowitz HH, Metzger G (1963) Anal Chem 35:1464CrossRefGoogle Scholar
  20. 20.
    Coat AW, Redern JP (1964) Nature 201:68CrossRefGoogle Scholar
  21. 21.
    Van Krevelen DW, Van Heerden C, Huntjens FJ (1951) Fuel 30:253Google Scholar
  22. 22.
    Ozawa T (1965) Bull Chem Soc Jpn 38:1881CrossRefGoogle Scholar
  23. 23.
    Vyazovkin S (1997) J Comput Chem 18:393CrossRefGoogle Scholar
  24. 24.
    Vyazovkin S (2001) J Comput Chem 22:178CrossRefGoogle Scholar
  25. 25.
    Wang X, Li X, Yan D (2000) J Appl Polym Sci 78:2025CrossRefGoogle Scholar
  26. 26.
    Li Z, Ma J, Zhu X, Liang B (2004) J Appl Polym Sci 91:3915CrossRefGoogle Scholar
  27. 27.
    Vyazovkin S (1996) Int J Chem Kinet 28:95CrossRefGoogle Scholar
  28. 28.
    Tang W, Li X, Yan D (2004) J Appl Polym Sci 91:445CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yingjin Wang
    • 1
    Email author
  • Haixian Ren
    • 1
  • Wenya Liu
    • 2
  • Mingtao Run
    • 3
  • Hairong Zhang
    • 1
  1. 1.Lab of Biochemical AnalysisXinzhou Teacher’s UniversityXinzhouChina
  2. 2.China Vocational and Technical CollegeShanghaiChina
  3. 3.College of Chemistry & Environmental ScienceHebei UniversityBaodingChina

Personalised recommendations