Journal of Materials Science

, Volume 44, Issue 1, pp 198–203 | Cite as

A simple gel route to synthesize nano-Li4Ti5O12 as a high-performance anode material for Li-ion batteries

  • D. Wang
  • N. Ding
  • X. H. Song
  • C. H. ChenEmail author


Nano-Li4Ti5O12 powders were synthesized by a simple gel route with acrylic acid, tetrabutyl titanate, and lithium nitrate as the precursors that were made into gels through thermal polymerization. The Li4Ti5O12 powders were obtained by calcination of the gels at 700, 750, and 800 °C. They were characterized by thermal gravimetric analysis, differential thermal analysis, X-ray diffraction, and field emission scanning electron microscopy. The electrochemical performance of these nano-Li4Ti5O12 powders was examined with galvanostatic cell cycling. The average particle size of the 700-, 750-, and 800 °C-calcined powders is about 70, 120, and 400 nm, respectively. The 750 °C-calcined powder exhibits a high capacity of over 160 mAh/g after 100 cycles and a good rate capability with a capacity of 122 mAh/g even at 10C rate.


Acrylic Acid Calcination Temperature Discharge Capacity Anode Material Differential Thermal Analysis Curve 



This study was supported by National Science Foundation of China (grant nos. 50372064 and 20471057). We are also grateful to Dr. Ingo Lieberwirth from Max-Plank Institute at Mainz for FESEM measurement.


  1. 1.
    Lu W, Belharouak I, Liu J et al (2007) J Electrochem Soc 154:A114CrossRefGoogle Scholar
  2. 2.
    Ma JX, Wang CS, Wroblewski S (2007) J Power Sources 164:849CrossRefGoogle Scholar
  3. 3.
    Sorensen EM, Barry SJ, Jung HK et al (2006) Chem Mater 18:482CrossRefGoogle Scholar
  4. 4.
    Ariyoshi K, Yamamoto S, Ohzuku T (2003) J Power Sources 119:959CrossRefGoogle Scholar
  5. 5.
    Gao J, Ying JR, Jiang CY et al (2007) J Power Sources 166:255CrossRefGoogle Scholar
  6. 6.
    Chen CH, Vaughey JT, Jansen AN et al (2001) J Electrochem Soc 148:A102CrossRefGoogle Scholar
  7. 7.
    Yao XL, Xie S, Chen CH et al (2005) Electrochim Acta 50:4076CrossRefGoogle Scholar
  8. 8.
    Yu Y, Shui JL, Chen CH (2005) Solid State Commun 135:485CrossRefGoogle Scholar
  9. 9.
    Scharner S, Weppner W, Schmid-Beurmann P (1999) J Electrochem Soc 146:857CrossRefGoogle Scholar
  10. 10.
    Peramunage D, Abraham KM (1998) J Electrochem Soc 145:2615CrossRefGoogle Scholar
  11. 11.
    Ferg E, Gummow RJ, Dekock A et al (1994) J Electrochem Soc 141:L147CrossRefGoogle Scholar
  12. 12.
    Zaghib K, Armand M, Gauthier M (1998) J Electrochem Soc 145:3135CrossRefGoogle Scholar
  13. 13.
    Takai S, Kamata M, Fujine S et al (1999) Solid State Ionics 123:165CrossRefGoogle Scholar
  14. 14.
    Ohzuku T, Ueda A, Yamamoto N (1995) J Electrochem Soc 142:1431CrossRefGoogle Scholar
  15. 15.
    Bach S, Pereira-Ramos JP, Baffier N (1998) J Mater Chem 8:251CrossRefGoogle Scholar
  16. 16.
    Bach S, Pereira-Ramos JP, Baffier N (1999) J Power Sources 82:273CrossRefGoogle Scholar
  17. 17.
    Venkateswarlu M, Chen CH, Do JS et al (2005) J Power Sources 146:204CrossRefGoogle Scholar
  18. 18.
    Hao YJ, Lai QY, Xu ZH et al (2005) Solid State Ionics 176:1201CrossRefGoogle Scholar
  19. 19.
    Shen CM, Zhang XG, Zhou YK et al (2002) Mater Chem Phys 78:437CrossRefGoogle Scholar
  20. 20.
    Wang PC, Ding HP, Bark T et al (2007) Electrochim Acta 52:6650CrossRefGoogle Scholar
  21. 21.
    Jiang C, Ichihara M, Honma I et al (2007) Electrochim Acta 52:6470CrossRefGoogle Scholar
  22. 22.
    Wolfenstine J, Lee U, Allen JL (2006) J Power Sources 154:287CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of Science and Technology of ChinaAnhui HefeiChina

Personalised recommendations