Journal of Materials Science

, Volume 44, Issue 1, pp 160–165 | Cite as

SiC nanofibers by pyrolysis of electrospun preceramic polymers

  • B. M. Eick
  • J. P. YoungbloodEmail author


Silicon carbide (SiC) nanofibers of diameters as low as 20 nm are reported. The fibers were produced through the electrostatic spinning of the preceramic poly(carbomethylsilane) with pyrolysis to ceramic. A new technique was used where the preceramic was blended with polystyrene and, subsequent to electrospinning, was exposed to UV to crosslink the PS and prevent fiber flowing during pyrolysis. Electrospun SiC fibers were characterized by Fourier transform infrared spectroscopy, thermo gravimetric analysis-differential thermal analysis, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and electron diffraction. Fibers were shown to be polycrystalline and nanograined with β-SiC 4H polytype being dominant, where commercial methods produce α-SiC 3C. Pyrolysis of the bulk polymer blend to SiC produced α-SiC 15R as the dominant polytype with larger grains showing that electrospinning nanofibers affects resultant crystallinity. Fibers produced were shown to have a core–shell structure of an oxide scale that was variable by pyrolysis conditions.


Pyrolysis Field Emission Scan Electron Microscopy Fiber Diameter Electrospun Fiber Electrospinning Process 



This study was partially supported by the Air Force Office of Scientific Research Grant #F49620-04-NA-153 and the National Science Foundation through the Graduate Assistantship in Areas of National Need. The authors would also like to thank Kent Van Every for help with the FESEM and Prof. Eric Stach with help with TEM.


  1. 1.
    Taylor G (1969) Proc R Soc Lond A 313:453CrossRefGoogle Scholar
  2. 2.
    Formhals A (1934) US Patent 1975504Google Scholar
  3. 3.
    Deitzel JM, Kleinmeyer J, Harris D, Tan NCB (2001) Polymer 42(1):261CrossRefGoogle Scholar
  4. 4.
    Reneker DH, Chun I (1996) Nanotechnology 7(3):216CrossRefGoogle Scholar
  5. 5.
    Doshi J, Reneker DH (1995) J Electrostat 35(2–3):151CrossRefGoogle Scholar
  6. 6.
    Jiang HL, Hu YQ, Zhao PC, Li Y, Zhu KJ (2006) J Biomed Mater Res B Appl Biomater 79B(1):50CrossRefGoogle Scholar
  7. 7.
    Takahashi T, Taniguchi M, Kawai T (2005) Jpn J Appl Phys 2 Lett Exp Lett 44(24–27):L860CrossRefGoogle Scholar
  8. 8.
    Fang X, Reneker DH (1997) J Macromol Sci Phys B 36(2):169CrossRefGoogle Scholar
  9. 9.
    Choi SS, Lee SG, Im SS, Kim SH, Joo YL (2003) J Mater Sci Lett 22(12):891CrossRefGoogle Scholar
  10. 10.
    Caruso RA, Schattka JH, Greiner A (2001) Adv Mater 13(20):1577CrossRefGoogle Scholar
  11. 11.
    Li D, Xia YN (2003) Nano Lett 3(4):555CrossRefGoogle Scholar
  12. 12.
    Jaeger R, Bergshoef MM, Batlle CMI, Schonherr H, Vancso GJ (1998) Macromol Symp 127:141CrossRefGoogle Scholar
  13. 13.
    He X, Zhang X, Zhang C, Zhou X, Zhou A (2001) Compos Sci Technol 61:117CrossRefGoogle Scholar
  14. 14.
    Nechanicky MA, Chew KW, Sellinger A, Laine RM (2000) J Eur Ceram Soc 20:441CrossRefGoogle Scholar
  15. 15.
    Krauthauser C, Deitzel JM, Wetze ED, O’Brien D (2003) Abstr Pap Am Chem Soc 226:U442Google Scholar
  16. 16.
    Buchko CJ, Chen LC, Shen Y, Martin DC (1999) Polymer 40(26):7397CrossRefGoogle Scholar
  17. 17.
    Ayres C, Bowlin GL, Henderson SC, Taylor L, Shultz J, Alexander J, Telemeco TA, Simpson DG (2006) Biomaterials 27(32):5524CrossRefGoogle Scholar
  18. 18.
    Saulig-Wenger K, Bechelany M, Cornu D, Epicier T, Chassagneux F, Ferro G, Monteil Y, Miele PJ (2005) Phys IV France 124:99CrossRefGoogle Scholar
  19. 19.
    Raman V, Bhatia G, Mishra AK, Bhardwaj S, Sood KN (2006) Mater Lett 60(29–30):3906CrossRefGoogle Scholar
  20. 20.
    Chen D, Gilbert CJ, Zhang XF, Ritchie RO (2000) Acta Mater 48(3):659CrossRefGoogle Scholar
  21. 21.
    Cheng QM, Interrante LV, Lienhard M, Shen Q, Wu Z (2005) J Euro Ceram Soc 25(2–3):233CrossRefGoogle Scholar
  22. 22.
    Jayaseelan DD, Lee WE, Amutharani D, Zhang S, Yoshida K, Kita H (2007) J Am Ceram Soc 90:1603CrossRefGoogle Scholar
  23. 23.
    Ye HH, Titchenal N, Gogotsi Y, Ko F (2005) Adv Mater 17(12):1531CrossRefGoogle Scholar
  24. 24.
    Li J, Zhang Y, Zhong X, Yang K, Meng J, Cao X (2007) Nanotechnology 18CrossRefGoogle Scholar
  25. 25.
    Hasegawa Y, Iimura M, Yajima S (1980) J Mater Sci 15(3):720. doi: CrossRefGoogle Scholar
  26. 26.
    Barham PJ, Keller A (1985) J Mater Sci 20(7):2281. doi: CrossRefGoogle Scholar
  27. 27.
    Laine RM, Babonneau F (1993) Chem Mater 5(3):260CrossRefGoogle Scholar
  28. 28.
    Clade J, Seider E, Sporn D (2005) J Eur Ceram Soc 25(2–3):123CrossRefGoogle Scholar
  29. 29.
    Yajima S, Hayashi J, Omori M (1975) Chem Lett 9:931CrossRefGoogle Scholar
  30. 30.
    Thorne KJ, Johnson SE, Zheng HX, Mackenzie JD, Hawthorne MF (1994) Chem Mater 6(2):110CrossRefGoogle Scholar
  31. 31.
    Toreki W, Batich CD, Sacks MD, Saleem M, Choi GJ, Morrone AA (1994) Compos Sci Technol 51:145CrossRefGoogle Scholar
  32. 32.
    Odian G (2004) Principles of polymerization, 4th edn. Wiley, Hoboken, NJ, p 174CrossRefGoogle Scholar
  33. 33.
    Zuo WW, Zhu MF, Yang W, Yu H, Chen YM, Zhang Y (2005) Polym Eng Sci 45(5):704CrossRefGoogle Scholar
  34. 34.
    JCPDS Card File Number 75–2078Google Scholar
  35. 35.
    Sandlin MS (1991) Master of Science. Purdue University, West Lafayette, INGoogle Scholar
  36. 36.
    JCPDS Card File Number 29–1127Google Scholar
  37. 37.
    Chiang YM, Smyth IP, Terwilliger CD, Petuskey WT, Eastman JA (1992) Nanostruct Mater 1:235Google Scholar
  38. 38.
    Opila E (1995) J Am Ceram Soc 78(4):1107CrossRefGoogle Scholar
  39. 39.
    Mogilevsky P, Boakye EE, Hay RS, Welter J, Kerans RJ (2006) J Am Ceram Soc 89(11):3481CrossRefGoogle Scholar
  40. 40.
    Zhu YT, Taylor ST, Stout MG, Butt DP, Lowe TC (1998) J Am Ceram Soc 81(3):655CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.School of Materials EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations