Advertisement

Journal of Materials Science

, Volume 44, Issue 1, pp 179–185 | Cite as

Synthesis and characterization of niobium-doped potassium tetragonal tungsten bronzes, KxNbyW1−yO3

  • Tapas Debnath
  • Subrata Chandra Roy
  • Claus H. Rüscher
  • Altaf Hussain
Article

Abstract

Needle-shaped crystals of sizes up to 5 μm × 5 μm × 40 μm of nominal composition KxNbyW1−yO3 were synthesized by solid state method at 800 °C using appropriate amount of WO3, WO2, Nb2O5, and K2WO4. The samples were characterized with XRD, SEM, microprobe analysis, optical spectroscopy, and Raman spectroscopy. The XRD patterns of the samples show single phase of tetragonal tungsten bronze (TTB) type (P4/mbm, No. 127) up to y = 0.07. Structure refinements reveal an increase in cell parameter with increasing nominal niobium content within the TTB phase. The elemental compositions of the crystals determined by electron microprobe analysis also show an increase in Nb content with increasing y. With increasing Nb content the reflectivity minimum in the near infrared spectral range shifts towards lower wavenumber indicating the effect of decreasing carrier concentration. Pyrochlore type phase (KNbWO6) is obtained as a second phase when nominal composition y > 0.07.

Keywords

Nominal Composition Tungsten Bronze Tetragonal Tungsten Bronze Silica Glass Tube Tetragonal Tungsten Bronze Structure 

Notes

Acknowledgement

AH is grateful to the Alexander von Humboldt Stiftung, Germany, and University Grants Commission, Bangladesh for financial support. TD thanks the “Land Niedersachsen”, Germany for support with the “Lichtenberg Stipendium” for his Ph.D. research fellowship. Finally, the authors are thankful to two anonymous referees for their helpful comments.

References

  1. 1.
    Hägg G (1935) Z Phys Chem B 29:192Google Scholar
  2. 2.
    Magnéli A (1950) Nova Acta Regiae Soc Sci Upsaliensis 14:4Google Scholar
  3. 3.
    Magnéli A (1949) Arkiv for Kemi 1:213Google Scholar
  4. 4.
    Magnali A (1953) Acta Chem Scand 7:315CrossRefGoogle Scholar
  5. 5.
    Hussain A, Kihlborg L (1976) Acta Crystallogr A32:551CrossRefGoogle Scholar
  6. 6.
    Labbe Ph (1992) Key Eng Mater 68:293CrossRefGoogle Scholar
  7. 7.
    Tsuyumoto I, Kudo T (1996) Mat Res Bull 31:17CrossRefGoogle Scholar
  8. 8.
    Granqvist CG (2000) Sol Energ Mater Sol Cells 60:201CrossRefGoogle Scholar
  9. 9.
    Gabel J, Vonau W, Shuk P, Guth U (2004) Solid State Ionics 169:75CrossRefGoogle Scholar
  10. 10.
    Mann M, Shter GE, Reisner GM, Grader GS (2007) J Mater Sci 42:1010. doi: https://doi.org/10.1007/s10853-006-1384-x CrossRefGoogle Scholar
  11. 11.
    Skokan MR, Moulton WG, Morris RC (1979) Phys Rev B 20:3670CrossRefGoogle Scholar
  12. 12.
    Sato M, Grier BH, Shirane G, Fujishita H (1982) Phys Rev B 25:501CrossRefGoogle Scholar
  13. 13.
    Hussain A, Gruehn R, Rüscher CH (1997) J Alloys Compd 246:51CrossRefGoogle Scholar
  14. 14.
    Brusetti R, Haen P, Marcus J (2002) Phys Rev B 65:144528CrossRefGoogle Scholar
  15. 15.
    Brusetti R, Bordet P, Marcus J (2003) J Solid State Chem 172:148CrossRefGoogle Scholar
  16. 16.
    Leitus G, Cohen H, Reich S (2002) Physica C 371:321CrossRefGoogle Scholar
  17. 17.
    Hussain A, Ul-Monir A, Murshed MM, Rüscher CH (2002) Z Anorg Allg Chem 628:416CrossRefGoogle Scholar
  18. 18.
    Debnath T, Rüscher CH, Gesing TM, Koepke J, Hussain A (2008) J Solid State Chem 181:783CrossRefGoogle Scholar
  19. 19.
    Hussain A (1978) Chem Commun Univ Stockholm 2:1Google Scholar
  20. 20.
    Yang X, Li C, Mo M, Zhan J, Yu W, Yan Y, Qian Y (2003) J Cryst Growth 249:594CrossRefGoogle Scholar
  21. 21.
    Gu Z, Ma Y, Zhai T, Gao B, Yang W, Yao J (2006) Chem Eur J 12:7717CrossRefGoogle Scholar
  22. 22.
    Szilágyi IM, Hange F, Madarász J, Pokol G (2006) Eur J Inorg Chem 17:3413CrossRefGoogle Scholar
  23. 23.
    Szilágyi IM, Madarász J, Pokol G, Király P, Tárkányi G, Saukko S, Mizsei J, Tóth AL, Szabó A, Varga-Josepovits K (2008) Chem Matter 20:4116CrossRefGoogle Scholar
  24. 24.
    Magnéli A (1989) In: 12th European Crystallographic meeting, MoscowGoogle Scholar
  25. 25.
    Deschanvres A, Frey M, Raveau B, Thomazea Jc (1968) Bull De La Societe Chim De France:3519Google Scholar
  26. 26.
    Johansson KE, Palm T, Werner PE (1980) J Phys E: Sci Instrum 13:1289CrossRefGoogle Scholar
  27. 27.
    Werner PE (1970) Arkiv for Kemi 31:513Google Scholar
  28. 28.
    Raveau B, Thomazea Jc (1968) Comptes Rendus Hebd Des Seances De L Acad Des Sci Serie C 266:540Google Scholar
  29. 29.
    Miyamoto Y, Kume S, Doumerc JP, Hagenmuller P (1983) Mat Res Bull 18:1463CrossRefGoogle Scholar
  30. 30.
    Dubson MA, Holcomb DF (1985) Phys Rev B 32:1955CrossRefGoogle Scholar
  31. 31.
    Darriet B, Rat M, Galy J (1970) Comptes Rendus Hebd Des Seances De L Acad Des Sci Serie C 271:1324Google Scholar
  32. 32.
    Feinleib J, Scouler WJ, Ferretti A (1968) Phys Rev B 165:765CrossRefGoogle Scholar
  33. 33.
    Kuhn A, Bashir H, Dos Santos AL, Acosta JL, García-Alvarado F (2004) J Solid State Chem 177:2366CrossRefGoogle Scholar
  34. 34.
    Sanjuán ML, Kuhn A, Azcondo MT, García-Alvarado F (2008) Eur J Inorg Chem 2008:49CrossRefGoogle Scholar
  35. 35.
    Maczka M, Hanuza J, Majchrowski (2001) J Raman Spectrosc 32:929Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Tapas Debnath
    • 1
  • Subrata Chandra Roy
    • 2
  • Claus H. Rüscher
    • 1
  • Altaf Hussain
    • 2
  1. 1.Institut für Mineralogie und Zentrum für Festkörperchemie und neue Materialien (ZFM)Leibniz Universität HannoverHannoverGermany
  2. 2.Department of ChemistryUniversity of DhakaDhakaBangladesh

Personalised recommendations