Journal of Materials Science

, Volume 44, Issue 1, pp 342–345 | Cite as

The effect of rubber micro-particles and silica nano-particles on the tensile fatigue behaviour of a glass-fibre epoxy composite

  • C. M. ManjunathaEmail author
  • A. C. Taylor
  • A. J. Kinloch
  • S. Sprenger


Fibre-reinforced polymer (FRP) matrix composites are widely used in airframe structural components. Although composites offer good and useful structural properties, they are brittle. Indeed, the commonly employed thermosetting epoxy matrices typically have a poor resistance to crack initiation and growth. Therefore, efforts have been made to improve the mechanical properties of the epoxy polymeric matrix, and thereby the properties of FRPs, through the incorporation of second-phase particles in the resin matrix [1, 2, 3, 4, 5, 6, 7, 8]. The addition of micrometre-sized rubber particles [1, 2, 3] and, more recently, nano-sized silica (SiO2) particles [4, 5, 6, 7, 8], into an epoxy polymer have been shown to improve the fracture energy of bulk epoxies by up to 10–15 times, without significantly impairing their other desirable engineering properties [5]. FRPs based upon such particle-reinforced matrices have also shown a remarkable improvement in their interlaminar fracture...


Fatigue Fatigue Life Fatigue Limit Epoxy Matrix Stiffness Reduction 



Dr. CM Manjunatha wishes to thank and acknowledge the United Kingdom–India Education and Research Initiative (UKIERI) for awarding the Research Fellowship and Dr. AR Upadhya, Director, National Aerospace Laboratories, Bangalore, India, for permitting him to accept the fellowship.


  1. 1.
    Drake RS, Siebert AR (1975) SAMPE Quart 6(4):11Google Scholar
  2. 2.
    Kinloch AJ, Shaw SJ, Tod DA, Hunston DL (1983) Polymer 24:1341CrossRefGoogle Scholar
  3. 3.
    Yee AF, Pearson RA (1986) J Mater Sci 21:2462. doi: CrossRefGoogle Scholar
  4. 4.
    Kinloch AJ (2003) MRS Bull 28(6):445CrossRefGoogle Scholar
  5. 5.
    Kinloch AJ, Mohammed RD, Taylor AC, Eger C, Sprenger S, Egan D (2005) J Mater Sci 40:5083. doi: CrossRefGoogle Scholar
  6. 6.
    Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S, Egan D (2006) J Mater Sci 41:5043. doi: CrossRefGoogle Scholar
  7. 7.
    Johnsen BB, Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S (2007) Polymer 48:530CrossRefGoogle Scholar
  8. 8.
    Caccavale V, Wichmann MHG, Quaresimin M, Schulte K (2007) In: AIAS XXXVI Convegno Nazionale, Ischia, Napoli, 4–8 Sept 2007Google Scholar
  9. 9.
    Summerscales J, Searle TJ (2005) Proc IMechE: J Mater Des Appl 219:45CrossRefGoogle Scholar
  10. 10.
    American Society for Testing and Materials (2003) Standard test method for tensile properties of polymer matrix composite materials, ASTM D3039, Annual book of ASTM Standards, vol 15.03. American Society for Testing and Materials, PA, USAGoogle Scholar
  11. 11.
    Talreja R (1987) Fatigue of composite materials. Technomic, Lancaster, PA, USAGoogle Scholar
  12. 12.
    Case SW, Reifsnider KL (2003) In: Milne I, Ritchie RO, Karihaloo B (eds) Comprehensive structural integrity volume 4: cyclic loading and fatigue, 1st edn. Elsevier Science, AmsterdamGoogle Scholar
  13. 13.
    Gagel A, Lange D, Schulte K (2006) Composites Part A 37:222CrossRefGoogle Scholar
  14. 14.
    Blackman BRK, Kinloch AJ, Sohn Lee J, Taylor AC, Agarwal R, Schueneman G, Sprenger S (2007) J Mater Sci 42:7049. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • C. M. Manjunatha
    • 1
    Email author
  • A. C. Taylor
    • 1
  • A. J. Kinloch
    • 1
  • S. Sprenger
    • 2
  1. 1.Department of Mechanical EngineeringImperial College LondonLondonUK
  2. 2.Nanoresins AGGeesthachtGermany

Personalised recommendations