Journal of Materials Science

, Volume 44, Issue 2, pp 601–607 | Cite as

In situ TEM study of Au–Cu alloy nanoparticle migration and coalescence

  • Abhay Raj S. GautamEmail author
  • James M. Howe


The diffusion and coalescence of Au–Cu alloy nanoparticles was studied at high magnification using in situ transmission electron microscopy. The particles prepared by physical vapor deposition onto amorphous-C support films had an average composition of Cu–43 at% Au and diameters of 15–50 nm. In the case analyzed, the larger of two nanoparticles remained stationary throughout the coalescence process while a smaller nanoparticle moved toward the larger particle at a temperature of ~573 K. The surface of the small nanoparticle was observed to fluctuate while approaching the larger particle, demonstrating that collective atom process occurs along the particle periphery. The particle also decreased in size during the process, indicating that it was losing mass as well as migrating. Direct evidence of a diffusional flux between particles was observed before the coalescence process. The small nanoparticle coalesced into the large one at a highly accelerated rate compared to its prior migration.


Large Particle Diffusional Flux Coalescence Process Particle Migration Particle Rotation 



This research was supported by the National Science Foundation under Grant DMR-0554792.


  1. 1.
    Datye AK (2003) J Catal 216:144CrossRefGoogle Scholar
  2. 2.
    Lifshitz IM, Slyozov VV (1961) Phys Chem Solids 19:35CrossRefGoogle Scholar
  3. 3.
    Voorhees PW (1985) J Stat Phys 38:231CrossRefGoogle Scholar
  4. 4.
    Wynblatt P, Gjostein NA (1976) Acta Mater 24:1165CrossRefGoogle Scholar
  5. 5.
    Zinke-Allmang M, Feldman LC, Grabow MH (1992) Surf Sci Rep 16:377CrossRefGoogle Scholar
  6. 6.
    Morgenstern K, Rosenfeld G, Comsa G (1996) Phys Rev Lett 761:2113CrossRefGoogle Scholar
  7. 7.
    Wen J-M, Chang S-L, Burnett JW et al (1994) Phys Rev Lett 73:2591CrossRefGoogle Scholar
  8. 8.
    Morgenstern K, Rosenfeld G, Poelsema B et al (1995) Phys Rev Lett 74:2058CrossRefGoogle Scholar
  9. 9.
    Reiss H (1968) J Appl Phys 39:5045CrossRefGoogle Scholar
  10. 10.
    Bardotti L, Jensen P, Hoareau A et al (1995) Phys Rev Lett 74:4694CrossRefGoogle Scholar
  11. 11.
    Ajayan PM, Marks LD (1988) Phys Rev Lett 60:585CrossRefGoogle Scholar
  12. 12.
    Smith DJ, Petfordlong AK, Wallenberg LR et al (1986) Science 233:872CrossRefGoogle Scholar
  13. 13.
    Jensen P, Clement A, Lewis LJ (2004) Comput Mater Sci 30:137CrossRefGoogle Scholar
  14. 14.
    Yang W-C, Zeman M, Ade H et al (2003) Phys Rev Lett 90:136102CrossRefGoogle Scholar
  15. 15.
    Sholl DS, Skodje RT (1996) Physica A 231:631CrossRefGoogle Scholar
  16. 16.
    Zhu H, Averback RS (1996) Philos Mag Lett 73:27CrossRefGoogle Scholar
  17. 17.
    Sinclair R, Itoh T, Chin R (2002) Microsc Microanal 8:288CrossRefGoogle Scholar
  18. 18.
    Thune E, Carpene E, Sauthoff K, Seibt M, Reinke P (2005) J Appl Phys 98:034304CrossRefGoogle Scholar
  19. 19.
    Chatterjee K, Howe JM, Johnson WC et al (2004) Acta Mater 52:2923CrossRefGoogle Scholar
  20. 20.
    Lee JG, Mori H (2007) Solid State Phenom 127:135CrossRefGoogle Scholar
  21. 21.
    Wallenberg R, Smith DJ, Bovin JO (1985) Ultramicroscopy 17(2):182CrossRefGoogle Scholar
  22. 22.
    Jensen P (1999) Rev Mod Phys 71:1695CrossRefGoogle Scholar
  23. 23.
    Wanner M, Werner R, Gerthsen D (2006) Surf Sci 600:632CrossRefGoogle Scholar
  24. 24.
    Hwang HJ, Kwon O, Kang JW (2004) Solid State Commun 129:687CrossRefGoogle Scholar
  25. 25.
    Lewis LJ, Jensen P, Combe N et al (2000) Phys Rev B 61:16084CrossRefGoogle Scholar
  26. 26.
    Foiles SM, Baskes MI, Daw MS (1986) Phys Rev B 33:7983CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations