Advertisement

Journal of Materials Science

, Volume 44, Issue 2, pp 620–631 | Cite as

Microscopy and microanalysis of inorganic polymer cements. 2: the gel binder

  • Redmond R. Lloyd
  • John L. ProvisEmail author
  • Jannie S. J. van Deventer
Article

Abstract

By scanning electron microscopy and microanalysis of fly ash-based and mixed fly ash-slag inorganic polymer cement (i.e., “fly ash geopolymer”) binders, a more detailed understanding of the gel structure and its formation mechanism have been developed. The binder is predominantly an aluminosilicate gel charge balanced by alkali metal cations, although it appears that calcium supplied by slag particles becomes relatively well dispersed throughout the gel. The gel itself is comprised of colloidal-sized, globular units closely bonded together at their surfaces. The microstructure of the binder resulting from hydroxide activation of fly ash is much less uniform than that which forms in a corresponding silicate-activated system; this can be rationalized in terms of a newly developed explanation for the differences in reaction mechanisms between these two systems. In hydroxide activation, the newly formed gel phase nucleates and grows outwards from the ash particle surfaces, whereas the high silica concentration in a silicate-activated system enables a more homogeneous gelation process to take place throughout the inter-particle volume.

Keywords

Zeolite Geopolymer Nuclear Magnetic Resonance Spectroscopy Silicate Solution Potassium Silicate Solution 

Notes

Acknowledgements

Partial financial support for this work was provided by the Australian Research Council (ARC), through Discovery Project grants awarded to J.S.J. van Deventer and through the Particulate Fluids Processing Centre, a Special Research Centre of the ARC.

References

  1. 1.
    Lloyd RR, Provis JL, van Deventer JSJ (2009) J Mater Sci, in press (Part 1 of this series). doi: https://doi.org/10.1007/s10853-008-3077-0 CrossRefGoogle Scholar
  2. 2.
    Provis JL, van Deventer JSJ (2007) Chem Eng Sci 62:2318CrossRefGoogle Scholar
  3. 3.
    Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJ (2007) J Mater Sci 42:2917. doi: https://doi.org/10.1007/s10853-006-0637-z CrossRefGoogle Scholar
  4. 4.
    Duxson P, Provis JL, Lukey GC, van Deventer JSJ (2007) Cem Concr Res 37:1590CrossRefGoogle Scholar
  5. 5.
    Steveson M, Sagoe-Crentsil K (2005) J Mater Sci 40:4247. doi: https://doi.org/10.1007/s10853-005-2794-x CrossRefGoogle Scholar
  6. 6.
    Sindhunata, van Deventer JSJ, Lukey GC, Xu H (2006) Ind Eng Chem Res 45:3559CrossRefGoogle Scholar
  7. 7.
    Rees CA, Provis JL, Lukey GC, van Deventer JSJ (2007) Langmuir 23:8170CrossRefGoogle Scholar
  8. 8.
    Lloyd RR (2008) Ph.D. thesis, University of Melbourne, AustraliaGoogle Scholar
  9. 9.
    Richardson IG, Groves GW (1992) J Mater Sci 27:6204. doi: https://doi.org/10.1007/BF01133772 CrossRefGoogle Scholar
  10. 10.
    Richardson IG (1999) Cem Concr Res 29:1131CrossRefGoogle Scholar
  11. 11.
    Duxson P, Lukey GC, Separovic F, van Deventer JSJ (2005) Ind Eng Chem Res 44:832CrossRefGoogle Scholar
  12. 12.
    Provis JL, van Deventer JSJ (2007) Chem Eng Sci 62:2309CrossRefGoogle Scholar
  13. 13.
    Rees CA, Provis JL, Lukey GC, van Deventer JSJ (2007) Langmuir 23:9076CrossRefGoogle Scholar
  14. 14.
    Bell JL, Sarin P, Provis JL, Haggerty RP, Driemeyer PE, Chupas PJ, van Deventer JSJ, Kriven WM (2008) Chem Mater 20:4768CrossRefGoogle Scholar
  15. 15.
    Provis JL, Duxson P, Lukey GC, van Deventer JSJ (2005) Chem Mater 17:2976CrossRefGoogle Scholar
  16. 16.
    Duxson P, Provis JL, Lukey GC, Mallicoat SW, Kriven WM, van Deventer JSJ (2005) Colloids Surf A 269:47CrossRefGoogle Scholar
  17. 17.
    Fernández-Jiménez A, Palomo A, Criado M (2005) Cem Concr Res 35:1204CrossRefGoogle Scholar
  18. 18.
    Kerch HM, Gerhardt RA, Grazul JL (1990) J Am Ceram Soc 73:2228CrossRefGoogle Scholar
  19. 19.
    Fernández-Jiménez A, García-Lodeiro I, Palomo A (2007) J Mater Sci 42:3055. doi: https://doi.org/10.1007/s10853-006-0584-8 CrossRefGoogle Scholar
  20. 20.
    Fernández-Jiménez A, Lachowski EE, Palomo A, Macphee DE (2004) Cem Concr Compos 26:1001CrossRefGoogle Scholar
  21. 21.
    Criado M, Fernández-Jiménez A, de la Torre AG, Aranda MAG, Palomo A (2007) Cem Concr Res 37:671CrossRefGoogle Scholar
  22. 22.
    Kinrade SD, Swaddle TW (1988) Inorg Chem 27:4253CrossRefGoogle Scholar
  23. 23.
    Ray NH, Plaisted RJ (1983) J Chem Soc Dalton Trans 475Google Scholar
  24. 24.
    Phair JW, van Deventer JSJ (2002) Int J Miner Proc 66:121CrossRefGoogle Scholar
  25. 25.
    Provis JL, Duxson P, Lukey GC, Separovic F, Kriven WM, van Deventer JSJ (2005) Ind Eng Chem Res 44:8899CrossRefGoogle Scholar
  26. 26.
    Swaddle TW (2001) Coord Chem Rev 219–221:665CrossRefGoogle Scholar
  27. 27.
    North MR, Swaddle TW (2000) Inorg Chem 39:2661CrossRefGoogle Scholar
  28. 28.
    Knight CTG (1990) Zeolites 10:140CrossRefGoogle Scholar
  29. 29.
    Cundy CS, Cox PA (2005) Micropor Mesopor Mater 82:1CrossRefGoogle Scholar
  30. 30.
    Knight CTG, Wang J, Kinrade SD (2006) Phys Chem Chem Phys 8:3099CrossRefGoogle Scholar
  31. 31.
    Lee WKW, van Deventer JSJ (2003) Langmuir 19:8726CrossRefGoogle Scholar
  32. 32.
    Rees CA, Provis JL, Lukey GC, van Deventer JSJ (2008) Colloids Surf A 318:97CrossRefGoogle Scholar
  33. 33.
    Lee WKW, van Deventer JSJ (2002) Colloids Surf A 211:49CrossRefGoogle Scholar
  34. 34.
    Provis JL, Lukey GC, Van Deventer JSJ (2005) Chem Mater 17:3075CrossRefGoogle Scholar
  35. 35.
    Rowles M, O’Connor B (2003) J Mater Chem 13:1161CrossRefGoogle Scholar
  36. 36.
    Blackford MG, Hanna JV, Pike KJ, Vance ER, Perera DS (2007) J Am Ceram Soc 90:1193CrossRefGoogle Scholar
  37. 37.
    Yip CK, Lukey GC, van Deventer JSJ (2005) Cem Concr Res 35:1688CrossRefGoogle Scholar
  38. 38.
    Yip CK, van Deventer JSJ (2003) J Mater Sci 38:3851. doi: https://doi.org/10.1023/A:1025904905176 CrossRefGoogle Scholar
  39. 39.
    Buchwald A, Hilbig H, Kaps C (2007) J Mater Sci 42:3024. doi: https://doi.org/10.1007/s10853-006-0525-6 CrossRefGoogle Scholar
  40. 40.
    Shi C, Krivenko PV, Roy DM (2006) Alkali-activated cements and concretes. Taylor & Francis, AbingdonCrossRefGoogle Scholar
  41. 41.
    Allahverdi A, Škvára F (2001) Ceram-Silik 45:143Google Scholar
  42. 42.
    Brough AR, Atkinson A (2002) Cem Concr Res 32:865CrossRefGoogle Scholar
  43. 43.
    Cong X, Kirkpatrick RJ (1996) Adv Cem Based Mater 3:144CrossRefGoogle Scholar
  44. 44.
    Yong SL, Feng DW, Lukey GC, van Deventer JSJ (2007) Colloids Surf A 302:411CrossRefGoogle Scholar
  45. 45.
    Slavík R, Bednařík V, Vondruška M, Skoba O, Hanzlíček T (2005) Chem Listy 99:s471Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Redmond R. Lloyd
    • 1
  • John L. Provis
    • 1
    Email author
  • Jannie S. J. van Deventer
    • 1
  1. 1.Department of Chemical & Biomolecular EngineeringUniversity of MelbourneMelbourneAustralia

Personalised recommendations