Advertisement

Journal of Materials Science

, Volume 44, Issue 9, pp 2226–2238 | Cite as

Grain boundary sliding controlled flow and its relevance to superplasticity in metals, alloys, ceramics and intermetallics and strain-rate dependent flow in nanostructured materials

  • K. A. PadmanabhanEmail author
Festschrift in honour of Prof T R Anantharaman on the occasion of his 80th birthday

Abstract

A model that was proposed originally to account for optimal superplasticity in metals and alloys with grain size in the micrometer range and later extended in a few subsequent papers to cover optimal superplastic deformation in ceramics, sub-micrometer-grained and nanostructured materials and intermetallics is described, with an emphasis on the current ideas used in this model and the mathematical procedure used at present (yet to be published in detail) for validating the proposals. The central assumption is that the rate controlling deformation process is confined to high-angle grain/interphase boundary regions that are essential for grain boundary sliding developing to a mesoscopic scale (defined to be of the order of a grain diameter or more) and for superplastic flow setting in. The strain rate equation was validated against experimental observations concerning metals, alloys and ceramics of micrometer- and sub-micrometer grain sizes, nanostructured materials and intermetallics.

Keywords

Triple Junction Plane Interface Bulk Metallic Glass Grain Boundary Slide Superplastic Deformation 

References

  1. 1.
    Padmanabhan KA, Davies GJ (1980) Superplasticity. Springer-Verlag, Heidelberg, BerlinGoogle Scholar
  2. 2.
    Kaibyshev OA (1992) Superplasticity in alloys, intermetallides and ceramics. Springer-Verlag, Heidelberg, BerlinGoogle Scholar
  3. 3.
    Nieh TG, Wadsworth J, Sherby OD (1997) Superplasticity in metals and ceramics. Cambridge University Press, CambridgeGoogle Scholar
  4. 4.
    Mishra RS, Stolyarov VV, Esher C, Valiev RZ, Mukherjee AK (2001) Mater Sci Eng A 298:44Google Scholar
  5. 5.
    Islamgaliev RK, Valiev RZ, Mishra RS, Mukherjee AK (2001) Mater Sci Eng A 304–306:206Google Scholar
  6. 6.
    McFadden SX, Valiev RZ, Mukherjee AK (2001) Mater Sci Eng A 319–321:849Google Scholar
  7. 7.
    Sergueeva AV, Stolyarov VV, Valiev RZ, Mukherjee AK (2002) Mater Sci Eng A 323:318Google Scholar
  8. 8.
    Dobatkin SV, Bastarache EN, Sakai G, Fujita T, Horita Z, Langdon TG (2005) Mater Sci Eng A 408:141Google Scholar
  9. 9.
    Horita Z, Langdon TG (2008) Scr Mater 58:1029Google Scholar
  10. 10.
    Kai M, Horita Z, Langdon TG (2008) Mater Sci Eng A 488:117Google Scholar
  11. 11.
    Neishi K, Horita Z, Langdon TG (2001) Scr Mater 45:965Google Scholar
  12. 12.
    Komura S, Furukawa M, Horita Z, Nemoto M, Langdon TG (2001) Mater Sci Eng A 297:111Google Scholar
  13. 13.
    Furui M, Kitamura H, Anada H, Langdon TG (2007) Acta Mater 55:1083Google Scholar
  14. 14.
    Neishi K, Uchida T, Yamauchi A, Nakamura K, Horita Z, Langdon TG (2001) Mater Sci Eng A 307:23Google Scholar
  15. 15.
    Perevezentsev VN, Chuvil’deev VN, Kopylov VI, Syseev AN, Langdon TG (2002) Ann Chimie Sci Materiaux 27:99Google Scholar
  16. 16.
    Figueiredo RB, Kawasaki M, Xu C, Langdon TG (2008) Mater Sci Eng A 493:104Google Scholar
  17. 17.
    Malek P, Turba K, Cieslar M, Drbohlav I, Kruml T (2007) Mater Sci Eng A 462:95Google Scholar
  18. 18.
    Musin F, Kaibyshev R, Motohashi Y, Itah G (2004) Scr Metall 50:511Google Scholar
  19. 19.
    Watanabe H, Mukai T, Ishikawa K, Higashi K (2002) Scr Mater 46:851Google Scholar
  20. 20.
    Cavaliere P, De Marco PP (2007) Mater Sci Eng A 462:206Google Scholar
  21. 21.
    Cavaliere P, De Marco PP (2007) Mater Sci Eng A 462:393Google Scholar
  22. 22.
    Kim WJ, Park JD, Wang JY, Sakk WSYY (2007) Scr Mater 57:755Google Scholar
  23. 23.
    Wang Q, Wei Y, Chino Y, Mabuchi M (2008) Rare Met 27:719Google Scholar
  24. 24.
    Wei YH, Wang QD, Zhu YP, Zhou HT, Ding WJ, Chino Y, Mubuchi M (2003) Mater Sci Eng A 360:107Google Scholar
  25. 25.
    Zhang KF, Ding S, Wang GF (2008) Mater Lett 62:719Google Scholar
  26. 26.
    Kim WJ, Lee KE, Park J, Kim MG, Wang JY, Yoon US (2008) Mater Sci Eng A 494:391Google Scholar
  27. 27.
    Duclos R (2004) J Eur Ceram Soc 24:3103Google Scholar
  28. 28.
    Figueiredo FB, Langdon TG (2006) Mater Sci Eng A 430:151Google Scholar
  29. 29.
    Bate PS, Ridley N, Zhang B (2007) Acta Mater 55:4995Google Scholar
  30. 30.
    Valiev RZ, Islamgaliev RK, Semenova IP (2007) Mater Sci Eng A 463:2Google Scholar
  31. 31.
    Watanabe H, Mukai T, Mabuchi M, Higashi K (2001) Acta Mater 49:2027Google Scholar
  32. 32.
    Klassen T, Suryanarayana C, Bormann R (2008) Scr Metall 59:455Google Scholar
  33. 33.
    Hiraga K, Kim B-N, Morita K, Yoshida H, Suzuki TS (2007) Sci Technol Adv Mater 8:578Google Scholar
  34. 34.
    Morita K, Higara K, Kim B-N (2007) Acta Mater 55:4517Google Scholar
  35. 35.
    Kishimoto A, Obata M, Asaeka H, Haya H (2007) J Eur Ceram Soc 27:41Google Scholar
  36. 36.
    Xu X, Nishimura T, Hirosaki N, Xie R-J, Yamamoto Y, Tanaka H (2006) Acta Mater 54:255Google Scholar
  37. 37.
    Charit I, Chokshi AH (2001) Acta Mater 49:2239Google Scholar
  38. 38.
    Imai T, Mao J, Dang S, Shigematsu I, Saito N, L’Esperance G (2004) Mater Sci Eng A 364:281Google Scholar
  39. 39.
    Zhan G-D, Mitomo M, Xie R-J, Kurashima K (2000) Acta Mater 48:2373Google Scholar
  40. 40.
    Zhou X, Hulbert DM, Kuntz JD, Sadangi RK, Shukla V, Kear BH, Mukherjee AK (2005) Mater Sci Eng A 394:353Google Scholar
  41. 41.
    Chen T, Mohamed FA, Mecartney ML (2006) Acta Mater 54:4415Google Scholar
  42. 42.
    Blandin J-J, Dendievel R (2000) Acta Mater 48:1541Google Scholar
  43. 43.
    Morita K, Hiraga K (2003) Scr Metall 48:1403Google Scholar
  44. 44.
    Kaibyshev OA, Pshenichnyuk AI (2005) Mater Sci Eng A 410–411:105Google Scholar
  45. 45.
    Muto H, Sakai M (2001) Acta Mater 48:4161Google Scholar
  46. 46.
    Yasuda K, Okamoto T, Shiota T, Matsuo Y (2006) Mater Sci Eng A 418:115Google Scholar
  47. 47.
    Balasubramanian N, Langdon TG (2003) Scr Mater 48:599Google Scholar
  48. 48.
    Balasubramanian N, Langdon TG (2005) Mater Sci Eng A 409:46Google Scholar
  49. 49.
    Chokshi AH (2002) J Eur Ceram Soc 22:2469Google Scholar
  50. 50.
    Padmanabhan KA, Vasin RA, Enikeev FU (2001) Superplastic flow: phenomenology and mechanics. Springer-Verlag, Heidelberg, BerlinGoogle Scholar
  51. 51.
    Mukherjee AK (2002) Mater Sci Eng A 322:1Google Scholar
  52. 52.
    Zhu YT, Langdon TG (2005) Mater Sci Eng A 409:234Google Scholar
  53. 53.
    Brown AM, Ashby MF (1980) Scr Metall 14:1297Google Scholar
  54. 54.
    Stocker RL, Ashby MF (1973) Scr Metall 7:115Google Scholar
  55. 55.
    Derby B, Ashby MF (1984) Scr Metall 18:1079Google Scholar
  56. 56.
    Pharr GM (1985) Scr Metall 19:1347Google Scholar
  57. 57.
    Davies GJ, Edington JW, Cutler CP, Padmanabhan KA (1970) J Mater Sci 5:1091. doi: https://doi.org/10.1007/BF00553897 Google Scholar
  58. 58.
    Padmanabhan KA (1971) Some aspects of superplasticity in metals. University of Cambridge, UKGoogle Scholar
  59. 59.
    Padmanabhan KA (1977) Mater Sci Eng 29:1Google Scholar
  60. 60.
    Speight MV (1975) Acta Mater 23:779Google Scholar
  61. 61.
    Speight MV (1976) Scr Metall 10:163Google Scholar
  62. 62.
    Stevens RN (1971) Philos Mag 23:265Google Scholar
  63. 63.
    Cannon WR (1972) Philos Mag 25:1489Google Scholar
  64. 64.
    Ashby MF, Verrall RA (1973) Acta Metall 21:149Google Scholar
  65. 65.
    Padmanabhan KA, Schlipf J (1993) In: Guceri SI (ed) Proceedings of the first international conference on transport phenomena in processing. Technomic Publishing Co., Lancaster, PA, p 491Google Scholar
  66. 66.
    Padmanabhan KA, Schlipf J (1996) Mater Sci Technol 12:391Google Scholar
  67. 67.
    Hahn H, Padmanabhan KA (1997) Philos Mag B 76:559Google Scholar
  68. 68.
    Hahn H, Mondal P, Padmanabhan KA (1997) Nanostruct Mater 9:603Google Scholar
  69. 69.
    Engler O, Padmanabhan KA, Luecke K (2000) Model Simul Mater Sci Eng 8:477Google Scholar
  70. 70.
    Markmann J, Bunzel P, Roesner H, Liu KW, Padmanabhan KA, Birringer R, Gleiter H, Weissmueller J (2003) Scr Mater 49:637Google Scholar
  71. 71.
    Padmanabhan KA, Gleiter H (2004) Mater Sci Eng A 381:28Google Scholar
  72. 72.
    Padmanabhan KA, Dinda GP, Hahn H, Gleiter H (2007) Mater Sci Eng A 452–453:462Google Scholar
  73. 73.
    Bhattacharya SS, Padmanabhan KA (1989) Trans Ind Inst Met 42(Suppl):5123Google Scholar
  74. 74.
    Gittus JH (1975) Creep, viscoelasticity and creep fracture in solids. Applied Science Publishers, London, p 18Google Scholar
  75. 75.
    Biscondi M, Goux C (1968) Mem Sci Rev Met 65:167Google Scholar
  76. 76.
    Wadsworth J, Palmer IG, Crooks DD, Lewis RE (1983) In: Starke ES Jr, Sandoss TH Jr (eds) Proceedings of the second international Al-Li conference. Met. Soc. AIME, Warrendale, p 111Google Scholar
  77. 77.
    Kronberg ML, Wilson FH (1949) Trans Am Inst Min Metall Engrs 185:501Google Scholar
  78. 78.
    Read WT, Shockley W (1950) Phys Rev 78:275Google Scholar
  79. 79.
    Brandon DG, Ralph B, Ranganathan S, Wald MS (1964) Acta Metall 12:813Google Scholar
  80. 80.
    Christian JW, Crocker AG (1980) In: Nabarro FRN (ed) Dislocations in solids, vol 3. North Holland Publishing Co., Oxford, p 165Google Scholar
  81. 81.
    Pumphrey PH, Gleiter H (1974) Philos Mag 30:593Google Scholar
  82. 82.
    Pumphrey PH, Gleiter H (1975) Philos Mag 32:881Google Scholar
  83. 83.
    Bullough R, Tewari VK (1979) In: Nabarro FRN (ed) Dislocations in solids, vol 2. North Holland Publishing Co., Oxford, p 1Google Scholar
  84. 84.
    Bollmann W, Michaut B, Sainfort G (1972) Phys Stat Sol (a) 13:13Google Scholar
  85. 85.
    Smith DA, Vitek V, Pond RC (1977) Acta Metall 25:475Google Scholar
  86. 86.
    Pond RC, Smith DA (1977) Philos Mag 36:353Google Scholar
  87. 87.
    Pond RC, Smith DA, Vitek V (1978) Scr Metall 12:699Google Scholar
  88. 88.
    Ashby MF, Spaepen F (1978) Scr Metall 12:193Google Scholar
  89. 89.
    Ashby MF, Spaepen F, Williams S (1978) Acta Metall 26:1647Google Scholar
  90. 90.
    Sutton AP, Vitek V (1980) Scr Metall 14:129Google Scholar
  91. 91.
    Sutton AP, Vitek V (1980) In: Ashby MF et al (eds) Proceedings of the international conference on dislocation modelling of physical systems. Pergamon, Oxford, p 549Google Scholar
  92. 92.
    Sutton AP, Baluffi RW, Vitek V (1981) Scr Metall 15:989Google Scholar
  93. 93.
    Sutton AP (1982) Philos Mag A 46:171Google Scholar
  94. 94.
    Sutton AP, Vitek V (1983) Philos Trans R Soc A 309:1, 37, 55Google Scholar
  95. 95.
    Schwartz D, Vitek V, Sutton AP (1985) Philos Mag A 51:499Google Scholar
  96. 96.
    Wolf D (1990) Acta Metall Mater 38:781, 791Google Scholar
  97. 97.
    Eshelby JD (1957) Proc Roy Soc A 241:376Google Scholar
  98. 98.
    Haasen P (1978) Physical metallurgy. Cambridge University Press, Cambridge, pp 46–47Google Scholar
  99. 99.
    Van Swygenhoven H, Frakas D, Caro A (2000) Phys Rev B 62:831Google Scholar
  100. 100.
    Perevezentsev VN, Rybin VV, Chuvildeev VN (1992) Acta Metall Mater 40:895Google Scholar
  101. 101.
    Sergueeva AV, Mara NA, Valiev RZ, Mukherjee AK (2005) Mater Sci Eng A 410–411:413Google Scholar
  102. 102.
    Gutkin MYu, Ovid’ko IA, Skiba NV (2004) Acta Mater 52:1711Google Scholar
  103. 103.
    Ovid’ko IA, Sheinerman AG (2005) Acta Mater 53:1347Google Scholar
  104. 104.
    Kaibyshev OA (2002) Mater Sci Eng A 324:96Google Scholar
  105. 105.
    Edington JW, Melton KN, Cutler CP (1976) Prog Mater Sci 21(2):63Google Scholar
  106. 106.
    Padmanabhan KA, Luecke K (1986) Z Metallkd 77:765Google Scholar
  107. 107.
    Swygenhoven HV, Caro A (1997) Appl Phys Lett 71:1652Google Scholar
  108. 108.
    Swygenhoven HV, Caro A (1997) Nanostruct Mater 9:669Google Scholar
  109. 109.
    Schiotz J, DiTollo FD, Jacobsen KW (1998) Nature 391:561Google Scholar
  110. 110.
    Swygenhoven HV, Caro A (1998) Phys Rev B 58:11246Google Scholar
  111. 111.
    Swygenhoven HV, Spaczer M, Caro A, Farkas D (1999) Phys Rev B 60:22Google Scholar
  112. 112.
    Schiotz J, Vegge T, DiTillo FD, Jacobsen KW (1999) Phys Rev B 60:11971Google Scholar
  113. 113.
    Swygenhoven HV, Spaczer M, Caro A (1999) Acta Mater 47:3117Google Scholar
  114. 114.
    Swygenhoven HV, Derlet P (2001) Phys Rev B 64:4105Google Scholar
  115. 115.
    Venkatesh TA, Bhattacharya SS, Padmanabhan KA, Schlipf J (1996) Mater Sci Technol 12:635Google Scholar
  116. 116.
    Enikeev FU, Padmanabhan KA, Bhattacharya SS (1999) Mater Sci Technol 15:673Google Scholar
  117. 117.
    Gifkins RC (1976) Metall Trans 7A:1225Google Scholar
  118. 118.
    Keblinski P, Wolf D, Phillpot SR, Gleiter H (1999) Scr Metall Mater 41:631Google Scholar
  119. 119.
    Matsuki K, Minami K, Tokizawa M, Murakami Y (1979) Met Sci 13:619Google Scholar
  120. 120.
    Owen DM, Chokshi AH (1998) Acta Mater 46:667Google Scholar
  121. 121.
    Betz U, Padmanabhan KA, Hahn H (2001) J Mater Sci 36:5811. doi: https://doi.org/10.1023/A:1012956005571 Google Scholar
  122. 122.
    Gouthama, Padmanabhan KA (2003) Scr Mater 49:761Google Scholar
  123. 123.
    Astanin VV, Faizova SN, Padmanabhan KA (1996) Mater Sci Technol 1:489Google Scholar
  124. 124.
    Mara NA, Sergueeva AV, Mara TD, McFadden SX, Mukherjee AK (2007) Mater Sci Eng A 463:238Google Scholar
  125. 125.
    Inoue A (2000) Acta Mater 48:279Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Materials Science and Engineering DivisionAnna UniversityChennaiIndia

Personalised recommendations