Advertisement

Journal of Materials Science

, Volume 44, Issue 1, pp 244–249 | Cite as

Compositional dependence of structural and electrical properties in (1 − x)[PMN–PT(65/35)]–xPZ solid solutions

  • Lin Wang
  • Qiang LiEmail author
  • Zhiguo Xia
  • Wenxun Yan
Article

Abstract

Perovskite types (1 − x)[PMN–PT(65/35)]–xPZ (with x = 0, 0.1, 0.3, 0.5, 0.7 and 0.9) piezoelectric ceramics were prepared by a modified columbite precursor method. The lattice parameters of the (1 − x)[PMN–PT(65/35)]–xPZ ceramics increase with the addition of larger Zr4+ ion compared to that of other B-site ions. The SEM photographs of all the samples with different PZ content exhibit homogeneous and dense microstructure. The PE loops indicate the PMN–PT–PZ ternary system has excellent ferroelectric properties. Both d33 and kp dependences in PZ content show similar variation. Introduction of a small amount of PZ content in the PMN–PT(65/35) ceramics enhanced the relaxor behavior, which was confirmed by studying frequency and temperature-dependent dielectric behavior. The increasing values of diffuseness parameter obtained from the fit of a modified Curie–Weiss law established the relaxor nature.

Keywords

Relaxor Behavior Morphotropic Phase Boundary Rhombohedral Phase Diffuse Phase Transition Dielectric Peak 

References

  1. 1.
    Service RE (1997) Science 275:1878CrossRefGoogle Scholar
  2. 2.
    Park S-E, Shrout TR (1997) J Appl Phys 82:1804CrossRefGoogle Scholar
  3. 3.
    Park S-E, Shrout TR (1997) Mater Res Innov 1:20CrossRefGoogle Scholar
  4. 4.
    Nomura S, Uchino K (1983) Ferroelectrics 50:197CrossRefGoogle Scholar
  5. 5.
    Masuzawa H, Ito Y, Nakaya C, Takeuchi H, Jyomura S (1989) Jpn J Appl Phys 28:101CrossRefGoogle Scholar
  6. 6.
    Yamashita Y, Hosono Y, Harada K, Yasuda N (2002) IEEE Trans Ultrason Ferroelectr Freq Control 49:184CrossRefGoogle Scholar
  7. 7.
    Ari-gur P, Benguigui L (1975) J Phys D Appl Phys 8:1856CrossRefGoogle Scholar
  8. 8.
    Hu XB, Wang JY, Ma LL, Xu XG, Luo HS, Zhu PP, Tian YL, Cryst J (2005) Growth 275:e1703CrossRefGoogle Scholar
  9. 9.
    Harmer MP, Chen J, Peng P, Chan HM, Smyth DM (1989) Ferroelectrics 97:263CrossRefGoogle Scholar
  10. 10.
    Chen J, Chan HM, Harmer MH (1989) J Am Ceram Soc 72:593CrossRefGoogle Scholar
  11. 11.
    Jiang XP, Fang JW, Zeng HR, Chu BJ, Li GR, Chen DR, Yin QR (2000) Mater Lett 44:219CrossRefGoogle Scholar
  12. 12.
    Xia ZG, Li Q (2007) J Phys D Appl Phys 40:7826CrossRefGoogle Scholar
  13. 13.
    Xia ZG, Wang L, Yan WX, Li Q, Zhang L (2007) Mater Res Bull 42:1715CrossRefGoogle Scholar
  14. 14.
    Swartz SL, Shrout TR (1982) Mater Res Bull 17:1245CrossRefGoogle Scholar
  15. 15.
    Wang L, Li Q, Xue LH, Zhang YL (2007) J Phys Chem Solids 68:2008CrossRefGoogle Scholar
  16. 16.
    Randall CA, Kim N, Kucera J, Cao W, Shrout TR (1998) J Am Ceram Soc 81:677CrossRefGoogle Scholar
  17. 17.
    Yoon KH, Lee HR (2001) J Appl Phys 89:3915CrossRefGoogle Scholar
  18. 18.
    Yimniruna R, Ananta S, Laoratanakul P (2005) J Eur Ceram 25:3235CrossRefGoogle Scholar
  19. 19.
    Uchino K, Nomura S (1982) Ferroelectr Lett 44:55CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of ChemistryTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations