Journal of Materials Science

, Volume 44, Issue 2, pp 563–571 | Cite as

Growth mechanism of ZnO nanowires via direct Zn evaporation

  • Hao Tang
  • Jack C. Chang
  • Yueyue Shan
  • D. D. D. Ma
  • Tsz-Yan Lui
  • Juan A. Zapien
  • Chun-Sing Lee
  • Shuit-Tong LeeEmail author


Zinc oxide (ZnO) nanowire synthesized from direct Zinc (Zn) vapor transport in O2 environment has been studied. The results show that the first step is the formation of ZnO film on the substrate. Then anisotropic abnormal grain growth in the form of ZnO platelets takes place. Subsequently, single-crystalline ZnO platelets grow in [0001] direction to form whiskers. During whisker growth, transformation from layer-by-layer growth to simultaneous multilayer growth occurs when the two-dimensional (2D) Ehrlich–Schwoebel (ES) barrier at the ZnO island edge is sufficiently large and the monolayer island diameter is smaller than the island spacing. As multilayered islands grows far away from the base, isotropic mass diffusion (spherical diffusion) will gradually displace anisotropic diffusion (linear diffusion), which contributes to the formation of pyramid on the top plane of the whisker. When the pyramid contains enough atomic layers, the 2D ES barrier transits to 3-dimensional ES barrier, which contributes to repeated nucleation and growth of multilayered islands or pyramids on the old pyramids. The pyramids play a critical role to taper the whisker to nanorod with a diameter less than 100 nm. The nanorod then grows to nanowire via repeated growth of epitaxial hexagonal-pyramid shape-like islands on the (0001)-plane with \( \left\{ {11\overline{2} 3} \right\} \) facets as the slope planes. During coarsening, the breakage of step motion of \( \left\{ {11\overline{2} 3} \right\} \) facets and the appearance of \( \left\{ {11\overline{2} 0} \right\} \) facets on the base of pyramids may result from the step bunching of {0001} facets, which is consistent with the existence of “2D” Ehrlich–Schwoebel barrier on the edge of (0001) facets.


Pyramid Anisotropic Diffusion Whisker Growth Nanowire Growth Isotropic Diffusion 



This work is supported by the Research Grants Council of Hong Kong SAR (N_CityU125/05), China, US Army International Technology Center—Pacific, and the National Basic Research Program of China (973 Program) (Grant Nos. 2007CB936000 and 2006CB933000).

Supplementary material

10853_2008_3071_MOESM1_ESM.pdf (12 kb)
MOESM1 (PDF 11 kb)


  1. 1.
    Zhong ZH, Wang DL, Cui Y, Bockrath MW, Lieber CM (2003) Science 302:1377CrossRefGoogle Scholar
  2. 2.
    Huang Y, Duan XF, Cui Y, Lauhon LJ, Kim KH, Lieber CM (2001) Science 294:1313CrossRefGoogle Scholar
  3. 3.
    Liu CY, Antonio J, Yao Y, Meng XM, Lee CS, Fan SS, Lifshitz Y, Lee ST (2003) Adv Mater 15:838CrossRefGoogle Scholar
  4. 4.
    Hu J, Odom TW, Lieber CM (1999) Acc Chem Res 32:435CrossRefGoogle Scholar
  5. 5.
    Wang ZL, Kong XY, Ding Y et al (2004) Adv Funct Mater 14:943CrossRefGoogle Scholar
  6. 6.
    Zhang H, Zhang SY, Pan S et al (2005) J Am Ceram Soc 88:566CrossRefGoogle Scholar
  7. 7.
    Wang N, Tang YH, Zhang YF, Lee CS, Lee ST (1998) Phys Rev B 58:R16024CrossRefGoogle Scholar
  8. 8.
    He MQ, Zhou PZ, Mohammad SN, Harris GL, Halpern JB, Jacobs R, Sarney WL, Salamanca-Riba L (2001) J Cryst Growth 231:357CrossRefGoogle Scholar
  9. 9.
    Wu Q, Hu Z, Wang XZ, Hu YM, Tian YJ, Chen Y (2004) Dia Rel Mat 13:38CrossRefGoogle Scholar
  10. 10.
    Vaddiraju S, Mohite A, Chin A, Meyyappan M, Sumanasekera G, Alphenaar BW, Sunkara MK (2005) Nano Lett 5:1625CrossRefGoogle Scholar
  11. 11.
    Sharma S, Sunkara MK (2002) J Am Chem Soc 124:12288CrossRefGoogle Scholar
  12. 12.
    Dang HY, Wang J, Fan SS (2003) Nanotechnology 14:738CrossRefGoogle Scholar
  13. 13.
    Lyu SC, Zhang Y, Lee CJ et al (2003) Chem Mater 15:3294CrossRefGoogle Scholar
  14. 14.
    Zhang Y, Jia HB, Yu DP (2004) J Phys D-Appl Phys 37:413CrossRefGoogle Scholar
  15. 15.
    Chang PC, Fan ZY, Wang D, Tseng WY, Chiou WA, Hong J, Lu JG (2004) Chem Mater 16:5133CrossRefGoogle Scholar
  16. 16.
    Wang RC, Liu CP, Huang JL, Chen SJ (2005) Appl Phys Lett 86:251104CrossRefGoogle Scholar
  17. 17.
    Kima TW, Kawazoe T, Yamazaki S, Ohtsu M, Sekiguchi T (2004) Appl Phys Lett 84:3358CrossRefGoogle Scholar
  18. 18.
    Zhao M, Chen XL, Zhang XN, Dai L, Jian JK, Xu YP (2004) Appl Phys A: Mater Sci Process 79:429CrossRefGoogle Scholar
  19. 19.
    Mozetic M, Cvelbar U, Sunkara MK, Vaddiraju S (2005) Adv Mater 17:2138CrossRefGoogle Scholar
  20. 20.
    Brenner SS, Sears GW (1956) Acta Met 4:270Google Scholar
  21. 21.
    Zhang Y, Jia HB, Luo XH, Chen XH, Yu DP, Wang RM (2003) J Phys Chem B 107:8289CrossRefGoogle Scholar
  22. 22.
    Kunaver U, Kolar D (1998) Acta Mater 46:4629CrossRefGoogle Scholar
  23. 23.
    Heuer AH, Fryburg GA, Ogbuji LU, Mitchell TE, Shinozaki SJ (1978) J Am Ceram Soc 61:406CrossRefGoogle Scholar
  24. 24.
    Mitchell TE, Ogbuji LU, Heuer AH (1978) J Am Ceram Soc 61:412CrossRefGoogle Scholar
  25. 25.
    Meyer B, Marx D (2003) Phys Rev B 67:035403CrossRefGoogle Scholar
  26. 26.
    Wang ZL, Kong XY, Zuo JM (2003) Phys Rev Lett 91:185502CrossRefGoogle Scholar
  27. 27.
    Hughes WL, Wang ZL (2005) Appl Phys Lett 86:043106CrossRefGoogle Scholar
  28. 28.
    Ehrlich G, Hudda FG (1966) J Chem Phys 44:1039CrossRefGoogle Scholar
  29. 29.
    Schwoebel R (1969) J Appl Phys 40:614CrossRefGoogle Scholar
  30. 30.
    Villain J (1991) J Phys I 1:19Google Scholar
  31. 31.
    Siegert M, Plischke M (1996) Phys Rev E 53:307CrossRefGoogle Scholar
  32. 32.
    Siegert M, Plischke M (1994) Phys Rev Lett 73:1517CrossRefGoogle Scholar
  33. 33.
    Lagally MG, Zhang ZY (2002) Nature 417:907CrossRefGoogle Scholar
  34. 34.
    Tersoff J, Vandergon AWD, Tromp RM (1994) Phys Rev Lett 72:266CrossRefGoogle Scholar
  35. 35.
    Kellogg GL, Feibelman PJ (1990) Phys Rev Lett 64:3143CrossRefGoogle Scholar
  36. 36.
    Vedensky DD, Zangwill A, Luse CN, Wilby MR (1993) Phys Rev E 48:852CrossRefGoogle Scholar
  37. 37.
    Filimonov SN, Hervieu YY (2004) Surf Sci 553:133CrossRefGoogle Scholar
  38. 38.
    Baxter JB, Wu F, Aydila ES (2003) Appl Phys Lett 83:3797CrossRefGoogle Scholar
  39. 39.
    Liu SJ, Huang HC, Woo CH (2002) Appl Phys Lett 80:3295CrossRefGoogle Scholar
  40. 40.
    Isu T, Watanabe A, Hata M, Katayama Y (1988) Jpn J Appl Phys 27:L2259CrossRefGoogle Scholar
  41. 41.
    Orme C, Johnson MD, Sudijono JL, Leung KT, Orr BG (1994) Appl Phys Lett 64:860CrossRefGoogle Scholar
  42. 42.
    Dulub O, Boatner LA, Diebold U (2002) Surf Sci 519:201CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hao Tang
    • 1
  • Jack C. Chang
    • 1
    • 2
  • Yueyue Shan
    • 1
  • D. D. D. Ma
    • 1
  • Tsz-Yan Lui
    • 1
  • Juan A. Zapien
    • 1
  • Chun-Sing Lee
    • 1
  • Shuit-Tong Lee
    • 1
    Email author
  1. 1.Center of Super-Diamond and Advanced Films (COSDAF) & Department of Physics and Materials ScienceCity University of Hong KongHong Kong SARChina
  2. 2.Nano-organic Photoelectronic Laboratory, Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations