Advertisement

Journal of Materials Science

, Volume 44, Issue 1, pp 84–92 | Cite as

Reaction of CaAl4O7 with (0001)-oriented α-Al2O3

  • A. Altay
  • C. B. CarterEmail author
  • M. A. Gülgün
Article

Abstract

Reactions between thin films of CA2 and (0001)-oriented α-Al2O3 have been studied using a combination of microscopy techniques. Thin films of amorphous CA2 were deposited on sapphire substrates by pulsed-laser deposition at 900 °C in an oxygen ambient atmosphere. After deposition, the reaction couples were heat treated in air for various times either at 1300 or 1400 °C. Atomic-force microscopy was used to monitor changes in the microstructure of the films. Interfaces between the different regions were examined by transmission electron microscopy (TEM) of cross-sectional samples prepared by focused ion-beam milling. The CA2 films had dewetted the substrate surface as a result of the heat treatment. An interfacial reaction layer was observed between the dewetted CA2 droplets and the substrate. The structure of this reaction layer was found to be consistent with γ-Al2O3 by computer analysis of high-resolution TEM images. There is a perfect epitaxy between the interfacial layer and the substrate. For the samples heat treated for longer times, hexagonal features were found on the substrate surface. The presence of these features on (0001)-oriented α-Al2O3 suggests that CA6 platelets form by the transformation of the interfacial reaction layer. The results are discussed in relation to the crystallization behavior of the various calcium aluminate phases and the equilibrium-phase diagram of the CaO–Al2O3 system.

Keywords

Orientation Relationship Reaction Layer Sample Heat Interfacial Reaction Layer ZrO2 Thin Film 

Notes

Acknowledgements

The work was initially supported by U.S. Department of Energy through grant DE-FG02-01ER45883 and subsequently by the 3M Harry Heltzer Endowed Chair, an NSF international travel grant INT-0322622 and a Turkish Science and Technology Foundation TUBITAK Bilateral Travel grant 103M038. The authors thank Dr. U. Dahmen for access to the FIB at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory; NCEM is supported by the U.S. Department of Energy under Contract # DE-AC02-05CH11231.

References

  1. 1.
    Hansen SC, Philips DS (1983) Philos Mag 47:209CrossRefGoogle Scholar
  2. 2.
    Bae IJ, Baik S (1996) Mater Sci Forum 204–206:485CrossRefGoogle Scholar
  3. 3.
    Bae IJ, Baik S (1997) J Am Ceram Soc 80:1149CrossRefGoogle Scholar
  4. 4.
    Cook RF, Schrott AG (1988) J Am Ceram Soc 71:50CrossRefGoogle Scholar
  5. 5.
    Handwerker CA, Morris PA, Coble RL (1989) J Am Ceram Soc 72:130CrossRefGoogle Scholar
  6. 6.
    Brydson R, Chen SC, Riley FL, Milne SJ (1998) J Am Ceram Soc 81:369CrossRefGoogle Scholar
  7. 7.
    Park SY (1996) J Mater Sci Lett 15:878CrossRefGoogle Scholar
  8. 8.
    Ravishankar N, Carter CB (2001) Acta Mater 49:1963CrossRefGoogle Scholar
  9. 9.
    Bae SI, Baik S (1993) J Am Ceram Soc 76:1065CrossRefGoogle Scholar
  10. 10.
    Altay A, Gülgün MA (2003) J Am Ceram Soc 86:623CrossRefGoogle Scholar
  11. 11.
    Altay A, Gülgün MA (2004) Key Eng Mater 264–268:219CrossRefGoogle Scholar
  12. 12.
    Belmonte M, Sanchezherencia AJ, Moreno R, Miranzo P, Moya JS, Tomsia AP (1993) J Phys IV 3:1443Google Scholar
  13. 13.
    Nagaoka T, Yasuoka M, Hirao K, Kanzaki S, Yamaoka Y (1996) J Mater Sci Lett 15:1815CrossRefGoogle Scholar
  14. 14.
    Powell-Dogan CA, Heuer AH (1990) J Am Ceram Soc 73:3670CrossRefGoogle Scholar
  15. 15.
    Kaplan WD, Mullejans H, Ruhle M (1995) J Am Ceram Soc 78:2841CrossRefGoogle Scholar
  16. 16.
    Mallamaci MP, Sartain KB, Carter CB (1998) Philos Mag A 77:561CrossRefGoogle Scholar
  17. 17.
    Nurse RW, Welch JH, Majumdar AJ (1965) Br Ceram Trans 64:409Google Scholar
  18. 18.
    Kohatsu I, Brindley GW (1968) Z Phys Chem Neue Folge 60:79CrossRefGoogle Scholar
  19. 19.
    Ito S, Kato M, Suzuki K, Inagaki M (1977) Z Phys Chem Neue Folge 104:147CrossRefGoogle Scholar
  20. 20.
    De Jonghe LC, Schmid H, Chang M (1984) J Am Ceram Soc 67:27CrossRefGoogle Scholar
  21. 21.
    Norton MG, Summerfelt SR, Carter CB (1990) Appl Phys Lett 56:2246CrossRefGoogle Scholar
  22. 22.
    Susnitzky DW, Carter CB (1992) J Am Ceram Soc 75:2463CrossRefGoogle Scholar
  23. 23.
    Altay A (2006) Calcium aluminate in alumina. PhD thesis, University of MinnesotaGoogle Scholar
  24. 24.
    Perrey CR, Carter CB, Michael JR, Kotula PG, Stach EA, Radmilovic VR (2004) J Microsc 214:222CrossRefGoogle Scholar
  25. 25.
    Zhang S, Garofalini SH (2005) J Am Ceram Soc 88:202CrossRefGoogle Scholar
  26. 26.
    Su X, Garofalini SH (2005) J Appl Chem 97:113526Google Scholar
  27. 27.
    Vallino M (1984) Ceram Int 10:30CrossRefGoogle Scholar
  28. 28.
    Douy A, Gervais M (2000) J Am Ceram Soc 83:70CrossRefGoogle Scholar
  29. 29.
    Cinibulk MK (1998) J Am Ceram Soc 81:3157CrossRefGoogle Scholar
  30. 30.
    MacKenzie KJD, Schmucker M, Smith ME, Poplett IJF, Kemmitt T (2000) Thermochim Acta 363:181CrossRefGoogle Scholar
  31. 31.
    Tas AC (1998) J Am Ceram Soc 81:2853CrossRefGoogle Scholar
  32. 32.
    Prinz GA (1985) Phys Rev Lett 54:1051CrossRefGoogle Scholar
  33. 33.
    Herr U (2000) Contemp Phys 41:93CrossRefGoogle Scholar
  34. 34.
    Utsunomiya A, Tanaka K, Morikawa H, Marumo F, Kojima H (1988) J Solid State Chem 75:197CrossRefGoogle Scholar
  35. 35.
    Morrissey KJ, Carter CB (1983) In: Rossington DR, Condrate RA, Snyder RL (eds) Advances in materials characterization, vol 15. Plenum Press, Alfred, NY, p 297CrossRefGoogle Scholar
  36. 36.
    Susnitzky DW, Carter CB (1986) J Am Ceram Soc 69:C25Google Scholar
  37. 37.
    Mallamaci MP, Carter CB (1999) J Am Ceram Soc 82:33CrossRefGoogle Scholar
  38. 38.
    Miller KT, Lange FF, Marshall DB (1990) J Mater Res 5:151CrossRefGoogle Scholar
  39. 39.
    Gimpl ML, McMaster AD, Fuschillo N (1964) J Appl Phys 35:3572CrossRefGoogle Scholar
  40. 40.
    Kane WM, Spratt JP, Hershinger LW (1966) J Appl Phys 37:2085CrossRefGoogle Scholar
  41. 41.
    Hummel RE, DeHoff RT, Matts-Goho S, Goho WM (1981) Thin Solid Films 78:1CrossRefGoogle Scholar
  42. 42.
    Lee SY, Hummel RE, Dehoff RT (1987) Thin Solid Films 149:29CrossRefGoogle Scholar
  43. 43.
    Sharma SK, Spitz J (1980) Thin Solid Films 66:51CrossRefGoogle Scholar
  44. 44.
    Sharma SK, Spitz J (1980) Thin Solid Films 67:109CrossRefGoogle Scholar
  45. 45.
    Caswell HL, Budo Y (1964) J Appl Phys 35:644CrossRefGoogle Scholar
  46. 46.
    Scharnhorst P (1969) Surf Sci 15:380CrossRefGoogle Scholar
  47. 47.
    Bachmann L, Sawyer DL, Siegel BM (1965) J Appl Phys 36:304CrossRefGoogle Scholar
  48. 48.
    Wu NL, Phillips J (1986) J Appl Phys 59:769CrossRefGoogle Scholar
  49. 49.
    Eustathopoulos N (1998) Acta Mater 46:2319Google Scholar
  50. 50.
    Rado C, Drevet B, Eustathopoulos N (2000) Acta Mater 48:4483CrossRefGoogle Scholar
  51. 51.
    Saiz E, Cannon RM, Tomsia AP (2000) Acta Mater 48:4449CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Envy, Energy & Environmental Investments, Inc.AnkaraTurkey
  2. 2.Department of Chemical, Materials & Biomolecular EngineeringUniversity of ConnecticutStorrsUSA
  3. 3.Department of Chemical Engineering & Materials ScienceUniversity of MinnesotaMinneapolisUSA
  4. 4.Sabanci University, FENS, OrhanliIstanbulTurkey

Personalised recommendations