Advertisement

Journal of Materials Science

, Volume 44, Issue 1, pp 300–305 | Cite as

Microstructure and mechanical properties of CrAlN coatings deposited by modified ion beam enhanced magnetron sputtering on AISI H13 steel

  • Chunyan Yu
  • Shebin Wang
  • Linhai Tian
  • Tianbao Li
  • Bingshe XuEmail author
Article

Abstract

CrAlN coatings were deposited on silicon and AISI H13 steel substrates using a modified ion beam enhanced magnetron sputtering system. At the modified ion beam bombardment, the effects of bias voltage and Al/(Cr + Al) ratio on microstructure and mechanical properties of the coatings were studied. The X-ray diffraction data showed that all CrAlN coatings were crystallized in the cubic NaCl B1 structure, showing the (111), (200), and (220) preferential orientation. It is noted that the (111) diffraction peak intensity decreased and the peaks broadened as the bias voltage increased at the same ratio of Al/Cr targets power, which is attributed to the variation in the grain size and microstrain. The microstructure observation of the coatings by field emission scanning electron microscopy cross-section morphology shows that the columnar grain became more compact and dense with increasing substrate bias voltage and Al concentration. At a substrate bias voltage of −120 V and a Al/(Cr + Al) ratio of 40%, the coating had the highest hardness (33.8 GPa) and excellent adhesion to the substrate.

Keywords

Acoustic Emission Acoustic Emission Signal Scratch Test Substrate Bias Voltage Scratch Track 

Notes

Acknowledgement

This work was financially supported by the National Natural Scientific Foundation of China (No. 20471041 and 90306014).

References

  1. 1.
    Heim D, Holler F, Mitterer C (1999) Surf Coat Technol 116–119:530CrossRefGoogle Scholar
  2. 2.
    Chiba Y, Omura T, Ichimura H (1993) J Mater Res 8:1109CrossRefGoogle Scholar
  3. 3.
    Bin T, Xiaodong Z, Naisai H, Jiawen H (2000) Surf Coat Technol 131:391CrossRefGoogle Scholar
  4. 4.
    Mayrhofer PH, Willmann H, Mitterer C (2001) Surf Coat Technol 146–147:222CrossRefGoogle Scholar
  5. 5.
    Romero J, Gómez MA, Esteve J, Montalà F, Carreras L, Grifol M, Lousa A (2006) Thin Solid Films 515:113CrossRefGoogle Scholar
  6. 6.
    Lin J, Mishra B, Moore JJ, Sproul WD (2006) Surf Coat Technol 201:4329CrossRefGoogle Scholar
  7. 7.
    Scheerer H, Hoche H, Broszeit E, Schramm B, Abele E, Berger C (2005) Surf Coat Technol 200:203CrossRefGoogle Scholar
  8. 8.
    Brizuela M, Garcia-Luis A, Braceras I, Oñate JI, Sánchez-López JC, Martínez-Martínez D, López-Cartes C, Fernández A (2005) Surf Coat Technol 200:192CrossRefGoogle Scholar
  9. 9.
    Brecher C, Spachtholz G, Bobzin K, Lugscheider E, Knotek O, Maes M (2005) Surf Coat Technol 200:1738CrossRefGoogle Scholar
  10. 10.
    Spain E, Avelar-Batista JC, Letch M, Housden J, Lerga B (2005) Surf Coat Technol 200:1507CrossRefGoogle Scholar
  11. 11.
    Kawate M, Hashimoto AK, Suzuki T (2003) Surf Coat Technol 165:163CrossRefGoogle Scholar
  12. 12.
    Ding X-Z, Zeng XT (2005) Surf Coat Technol 200:1372CrossRefGoogle Scholar
  13. 13.
    Gannon PE, Tripp CT, Knospe AK, Ramana CV, Deibert M, Smith RJ, Gorokhovsky VI, Shutthanandan V, Gelles D (2004) Surf Coat Technol 189:55CrossRefGoogle Scholar
  14. 14.
    Lugscheider E, Bobzin K, Lackner K (2003) Surf Coat Technol 175:681CrossRefGoogle Scholar
  15. 15.
    Bobzin K, Lugscheider E, Maes M, Gold PW, Loos J, Kuhn M (2004) Surf Coat Technol 189:649CrossRefGoogle Scholar
  16. 16.
    Wuhrer R, Yeung WY (2004) Scr Mater 50(12):1461CrossRefGoogle Scholar
  17. 17.
    Uchida M, Nihira N, Mitsuo A, Toyoda K, Kubota K, Aizawa T (2004) Surf Coat Technol 177–178:627CrossRefGoogle Scholar
  18. 18.
    Reiter AE, Derflinger VH, Hanselmann B, Bachmann T, Sartory B (2005) Surf Coat Technol 200(7):2114CrossRefGoogle Scholar
  19. 19.
    Hirai M, Ueno Y, Suzuki T, Jiang WH, Grigoriu C, Yatsui K (2001) Jpn J Appl Phys 40:1056CrossRefGoogle Scholar
  20. 20.
    Moiseev T, Cameron DC (2005) Surf Coat Technol 200:5306CrossRefGoogle Scholar
  21. 21.
    Henderson PS, Kelly PJ, Arnell RD, Bäcker H, Bradley JW (2003) Surf Coat Technol 174–175:779CrossRefGoogle Scholar
  22. 22.
    Bradley JW, Bäcker H, Kelly PJ, Arnell RD (2001) Surf Coat Technol 142–144:337CrossRefGoogle Scholar
  23. 23.
    Bradley JW, Bäcker H, Aranda-Gonzalo Y, Kelly PJ, Amell RD (2002) Plasma Sources Sci Technol 11:165CrossRefGoogle Scholar
  24. 24.
    Mišina M, Bradley JW, Bäcker H, Gonzalov YA, Karkari SK, Forder D (2003) Vacuum 68:171CrossRefGoogle Scholar
  25. 25.
    Qi D, Rongping L, Shouzhong Z, Jian D (2005) J Vac Sci Technol (China) 25(1):69Google Scholar
  26. 26.
    Endrino JL, Palacín S, Aguirre MH, Gutiérrez A, Schäfers F (2007) Acta Mater 55:2129CrossRefGoogle Scholar
  27. 27.
    Karlsson L, Hultman L, Johansson MP, Sundgren J-E, Ljungcrantz H (2000) Surf Coat Technol 126:1CrossRefGoogle Scholar
  28. 28.
    Tian L, Zhu X, Tang B, Pan J, He J (2007) Mater Sci Eng A 483–484:751Google Scholar
  29. 29.
    Zhou M, Makino Y, Nose M, Nogi K (1999) Thin Solid Films 339:203CrossRefGoogle Scholar
  30. 30.
    Liu ZJ, Shum PW, Li KY, Shen YG (2003) Philos Mag Lett 83:627CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Chunyan Yu
    • 1
  • Shebin Wang
    • 1
    • 2
  • Linhai Tian
    • 3
  • Tianbao Li
    • 1
    • 2
  • Bingshe Xu
    • 1
    • 2
    Email author
  1. 1.College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanChina
  2. 2.Key Laboratory of Interface Science and Engineering in Advanced MaterialsTaiyuan University of Technology, Ministry of EducationTaiyuanChina
  3. 3.Research Institute of Surface EngineeringTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations