Advertisement

Journal of Materials Science

, Volume 44, Issue 2, pp 655–663 | Cite as

X-ray diffraction investigations of α-polyamide 6 films: orientation and structural changes upon uni- and biaxial drawing

  • H. Shanak
  • K.-H. Ehses
  • W. Götz
  • P. Leibenguth
  • R. PelsterEmail author
Article

Abstract

We have investigated the influence of drawing on orientation, crystallinity, and structural properties of polyamide 6 films using X-ray diffraction. The samples were uniaxially and biaxially stretched resulting in the formation of monoclinic crystallites (α-form) in the size range of 8–10 nm. Depending on the drawing ratio, a degree of crystallinity of up to 60% is obtained. The average orientation of the crystallite axes was evaluated using the pole figure technique. The b*-axis, which corresponds to the chain direction of the polyamide molecules, lies in the film plane and shows a preferred orientation upon drawing. For uniaxial drawing, b* aligns with the drawing direction. For biaxially drawn films, which were prepared using the sequential stretching method, the second drawing determines the orientation of b*, at least at the center of the films. At the sides, b* is located between the two drawing directions reflecting the inhomogeneous distribution of mechanical stress during stretching.

Keywords

Pole Figure Drawing Ratio Average Orientation Machine Direction Drawing Direction 

References

  1. 1.
    Vasanthan N (2003) J Polym Sci: Part B: Polym Phys 41:2870CrossRefGoogle Scholar
  2. 2.
    Beltrame P, Citterio C, Testa G, Seves A (1999) J Appl Polym Sci 74:1941CrossRefGoogle Scholar
  3. 3.
    Arimoto H, Ishibashi M, Hirai M, Charani Y (1956) J Polym Sci: Part A 3:317Google Scholar
  4. 4.
    Stepaniak RF, Garton A, Carlsson DJ, Wiles DM (1979) J Appl Polym Sci 23:1747CrossRefGoogle Scholar
  5. 5.
    Parker J, Lindenmeyer P (1977) J Appl Polym Sci 21:821CrossRefGoogle Scholar
  6. 6.
    Holmes D, Bunn C, Smith J (1955) J Polym Sci 17:159CrossRefGoogle Scholar
  7. 7.
    Huisman R, Heuvel H, Lind K (1976) J Polym Sci Polym Phys 14:921CrossRefGoogle Scholar
  8. 8.
    Huisman R, Heuvel H (1976) J Polym Sci Polym Phys 14:941Google Scholar
  9. 9.
    Desper C, Stein R (1966) Journal of Applied Physics 37:3990CrossRefGoogle Scholar
  10. 10.
    Decker B, Asp E, Harker D (1948) J Appl Phys 19:388CrossRefGoogle Scholar
  11. 11.
    Riello P, Fagherazzi G, Canton P (1998) Acta Cryst A 54:219CrossRefGoogle Scholar
  12. 12.
    Alexander L (1971) X-ray diffraction methods in polymer science. Wiley-Interscience, New YorkCrossRefGoogle Scholar
  13. 13.
    Williamson G, Hall W (1953) Acta Metall 1:22CrossRefGoogle Scholar
  14. 14.
    Dencheva N, Denchev Z, Oliveira M, Funari S (2007) J Appl Polym Sci 103:2242CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • H. Shanak
    • 1
  • K.-H. Ehses
    • 1
  • W. Götz
    • 2
  • P. Leibenguth
    • 3
  • R. Pelster
    • 1
    Email author
  1. 1.Experimentalphysik, FB7.2Universität des SaarlandesSaarbrückenGermany
  2. 2.BASF SE CompanyLudwigshafenGermany
  3. 3.WerkstoffwissenschaftenUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations