Advertisement

Journal of Materials Science

, Volume 43, Issue 22, pp 7066–7072 | Cite as

Characterization and reactivity of chromia nanoparticles prepared by urea forced hydrolysis

  • Heather J. Gulley-Stahl
  • Whitney L. Schmidt
  • Heather A. BullenEmail author
Article

Abstract

Chromia (Cr2O3) nanoparticles were prepared by urea forced hydrolysis in the presence of chromium (III) nitrate using NaCl as a precipitating agent. The size, distribution, and purity of the particles were evaluated. The necessity of polyvinylpyrrolidone (PVP) as a surfactant to prevent aggregation was also investigated. In the presence of PVP, non-aggregated spherical-like nanoparticles (3 ± 1 nm) were formed, whereas in the absence of PVP, spherical-like weakly agglomerated nanoparticles (85 ± 16 nm) comprised of 10 nm nanoparticle subunits were produced, creating a large surface area. The as-formed hydrated Cr2O3 nanoparticles were amorphous, although they could be easily converted into crystalline form by heating to 400 °C for 1 h, with minimal particle aggregation and size reduction. Attenuated total reflectance Fourier transform infrared spectroscopy indicated that preparation methods (surfactant and precipitating agent) influence surface reactivity of the nanoparticles to catechol.

Keywords

Catechol Na2SO4 Narrow Size Distribution Chromium Oxide Atomic Force Microscopy Analysis 

Notes

Acknowledgements

This project was funded by the Merck Institute for Science Education, Kentucky NSF EPSCoR, Northern Kentucky University Center for Integrated Natural Science and Mathematics, NKU Greaves Endowment, and the NKU Research Foundation. The work was also supported in part by the National Science Foundation Instrument for Materials Research award (DMR-0526686) and Major Research Instrumentation award (EAR-0520921).

References

  1. 1.
    Kocon M, Michorczyk P, Ogonowski J (2005) Catal Lett 101:53CrossRefGoogle Scholar
  2. 2.
    Wang S, Murata K, Hayakawa T, Hamakawa S (2000) Appl Catal A 196:1CrossRefGoogle Scholar
  3. 3.
    Munoz R, Maso N, Julian B, Marquez F, Beltran H, Escribano P, Cordoncillo E (2004) J Eur Ceram Soc 24:2087CrossRefGoogle Scholar
  4. 4.
    Brock T, Groteklaes M, Mischke P (2000) European coating handbook. Vincentz Verlag, Hanover, GermanyGoogle Scholar
  5. 5.
    Cho B, Choi E, Chung S, Kim K, Kang T, Park C, Kim B (1999) Surf Sci 439:L799CrossRefGoogle Scholar
  6. 6.
    Kitsunai H, Hokkirigawa K, Tsumaki N, Kato K (1991) Wear 151:279CrossRefGoogle Scholar
  7. 7.
    Hsu C-H, Huang D-H, Ho W-Y, Huang L-T, Chang C-L (2006) Mater Sci Eng A 429:212CrossRefGoogle Scholar
  8. 8.
    Kawabata A, Yoshinaka M, Hirota K, Yamaguchi O (1995) J Am Ceram Soc 78:2271CrossRefGoogle Scholar
  9. 9.
    Kovarik O, Siegl J (2008) Strength Mater 40:79CrossRefGoogle Scholar
  10. 10.
    Balachandran U, Siegel RW, Liao YX, Askew TR (1995) Nanostruct Mater 5:505CrossRefGoogle Scholar
  11. 11.
    Ring T-A (1990) MRS Bull 15:34CrossRefGoogle Scholar
  12. 12.
    Jiang L, Yusong W, Yubai P, Jingkun G (2006) J Non-Cryst Solids 352:2404CrossRefGoogle Scholar
  13. 13.
    Kim D-W, Shin S-I, Lee JD, Oh S-G (2004) Mater Lett 58:1894CrossRefGoogle Scholar
  14. 14.
    Chatterjee M, Siladitya B, Ganguli D (1995) Mater Lett 25:261CrossRefGoogle Scholar
  15. 15.
    Arul Dhas N, Koltypin Y, Gendanken A (1997) Chem Mater 9:3159CrossRefGoogle Scholar
  16. 16.
    Zhong ZC, Cheng RH, Bosley J, Dowben PA, Sellmyer DJ (2001) Appl Surf Sci 181:196CrossRefGoogle Scholar
  17. 17.
    Morales JG, Carmona JG, Clemente RR, Muraviev D (2003) Langmuir 19:9110CrossRefGoogle Scholar
  18. 18.
    Zettlemoyer AC, Siddiq M, Micale FJ (1978) J Colloid Interface Sci 66:173CrossRefGoogle Scholar
  19. 19.
    Tsuzuki T, McCormick PG (2000) Acta Mater 48:2795CrossRefGoogle Scholar
  20. 20.
    Xu H, Lou T, Li Y (2004) Inorg Chem Commun 7:666CrossRefGoogle Scholar
  21. 21.
    Kim D-W, Oh S-G (2005) Mater Lett 59:976CrossRefGoogle Scholar
  22. 22.
    Ocana M (2001) J Eur Ceram Soc 21:931CrossRefGoogle Scholar
  23. 23.
    Demchak R, Matijevic E (1969) J Colloid Interface Sci 31:257CrossRefGoogle Scholar
  24. 24.
    Music S, Maljkovic M, Popovic S, Trojko R (1999) Croat Chem Acta 72:789Google Scholar
  25. 25.
    Sprycha R, Matijevic E (1989) Langmuir 5:479CrossRefGoogle Scholar
  26. 26.
    Subrt J, Stengl V, Bakardjieva S, Szatmary L (2006) Powder Technol 169:33CrossRefGoogle Scholar
  27. 27.
    Soler-Illia G, Jobbagy M, Candal RJ, Regazzoni AE, Blesa MA (1998) J Dispers Sci Technol 19:207CrossRefGoogle Scholar
  28. 28.
    Music S, Popovic S, Maljkovic M, Dragcevic D (2002) J Alloys Compd 347:324CrossRefGoogle Scholar
  29. 29.
    Wang H, Fan Y, Shi G, Liu Z, Liu H, Bao X (2007) Catal Today 125:149CrossRefGoogle Scholar
  30. 30.
    Hind AR, Bhargava SK, McKinnon A (2001) Adv Colloid Interface Sci 93:91CrossRefGoogle Scholar
  31. 31.
    McQuillan AJ (2001) Adv Mater 13:1034CrossRefGoogle Scholar
  32. 32.
    He R, Davda RR, Dumesic JA (2005) J Phys Chem B 109:2810CrossRefGoogle Scholar
  33. 33.
    Burgi T, Bieri M (2004) J Phys Chem B 108:13364CrossRefGoogle Scholar
  34. 34.
    O’Day PA (1999) Rev Geophys 37:249CrossRefGoogle Scholar
  35. 35.
    Brown GE Jr, Henrich VE, Casey WH, Clark DL, Eggleston C, Felmy A, Goodman WA, Gratzel M, Maciel G, McCarthy MI, Nealson K, Sverjensky DA, Toney MF, Zachara JM (1999) Chem Rev 99:77CrossRefGoogle Scholar
  36. 36.
    Connor PA, Dobson KD, McQuillan AJ (1995) Langmuir 11:4193CrossRefGoogle Scholar
  37. 37.
    Rivera D, Harris JM (2001) Anal Chem 73:411CrossRefGoogle Scholar
  38. 38.
    Yang D-Q, Xiong Y-O, Guo Y, Da D-A, Lu W-G (2000) J Mater Sci 36:263. doi: https://doi.org/10.1023/A:1004894532155 CrossRefGoogle Scholar
  39. 39.
    Markiewicz P, Goh MC (1995) J Vac Sci Technol B 13:1115CrossRefGoogle Scholar
  40. 40.
    Hosokawa M, Nogi K, Naito M, Yokoyama T (eds) (2007) Nanoparticle technology handbook. Elsevier, OxfordGoogle Scholar
  41. 41.
    Amonette JE, Rai D (1990) Clays Clay Miner 38:129CrossRefGoogle Scholar
  42. 42.
    Bordoko Y, Humphrey SM, Tilley TD, Frei H, Somorjai GA (2007) J Phys Chem C 111:6288CrossRefGoogle Scholar
  43. 43.
    Tabbal M, Kahwaji S, Christidis TC, Nsouli B, Zahraman K (2006) Thin Solid Films 515:1976CrossRefGoogle Scholar
  44. 44.
    Brown DA, Cunningham D, Glass WK (1968) Spectrochim Acta A 24:965CrossRefGoogle Scholar
  45. 45.
    Banobre-Lopez M, Vazquez-Vazquez C, Rivas J, Lopez-Quintela MA (2003) Nanotechnology 14:318CrossRefGoogle Scholar
  46. 46.
    Finger LW, Hazen RM (1980) J Appl Phys 51:5362CrossRefGoogle Scholar
  47. 47.
    Patterson AL (1939) Phys Rev 56:978CrossRefGoogle Scholar
  48. 48.
    Vasudevan D, Stone AT (1996) Environ Sci Technol 30:1604CrossRefGoogle Scholar
  49. 49.
    Araujo PZ, Morando PJ, Blesa MA (2005) Langmuir 21:3470CrossRefGoogle Scholar
  50. 50.
    Duckworth OW, Martin ST (2001) Geochim Cosmochim Acta 65:4289CrossRefGoogle Scholar
  51. 51.
    Johnson SB, Yoon TH, Kocar BD, Brown GE Jr (2004) Langmuir 20:4996CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Heather J. Gulley-Stahl
    • 1
  • Whitney L. Schmidt
    • 1
  • Heather A. Bullen
    • 1
    Email author
  1. 1.Department of ChemistryNorthern Kentucky UniversityHighland HeightsUSA

Personalised recommendations