Journal of Materials Science

, Volume 44, Issue 1, pp 250–256 | Cite as

Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent

  • Naiwen Zhang
  • Qinfeng Wang
  • Jie RenEmail author
  • Liang Wang


Poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) were melt-blended in the presence of glycidyl methacrylate (GMA) by twin-screw extrusion. The physical properties, phase morphology, thermal properties, and melt rheological behavior of the blends were investigated by tensile tests, Charpy impact tests, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and advanced rheology expended system (ARES). With 2 or 5 wt% GMA, the tensile toughness of the PLA/PBAT blend was greatly increased without severe loss in tensile strength. The impact strength of the blend was also significantly improved at 1 wt% of GMA addition but ultimately trended to be saturated with increasing GMA. SEM micrographs revealed that better miscibility and more shear yielding mechanism were involved in the toughening of the blend. DSC results indicated that the blend is still a two-phase system in the presence of reaction agent and the addition of GMA was found to enhance the interfacial adhesion between PLA and PBAT. Rheological results revealed that the addition of T-GMA increased the storage moduli (G′), loss moduli (G′′) and complex viscosity of the blends at nearly all frequencies. The decreased shear-thinning tendency of the blends in the presence of T-GMA also implied improved melt stability during processing.


Differential Scanning Calorimetry Impact Strength Adipic Acid Complex Viscosity Ultimate Strain 



This work is supported by the National 863 Program of China (No. 2006AA02Z248), the Program for New Century Excellent Talents in University (No. NCET-05-0389), the Program of Shanghai Subject Chief Scientist (No. 07XD14029) and the fund of Shanghai International co-operation of Science and Technology (No. 075207046).


  1. 1.
    Sodergard A, Scolt M (2002) Prog Polym Sci 27:1123CrossRefGoogle Scholar
  2. 2.
    Van de Velde K, Kiekens P (2002) Polym Test 21:433CrossRefGoogle Scholar
  3. 3.
    Lunt J (1998) Polym Degrad Stab 59:145CrossRefGoogle Scholar
  4. 4.
    Miyata T, Masuko T (1998) Polymer 39:5515CrossRefGoogle Scholar
  5. 5.
    Iannace S, Maffezzoli A, Leo G et al (2001) Polymer 42(8):3799CrossRefGoogle Scholar
  6. 6.
    Wehrenberg RH II (1981) Mater Eng 94:63Google Scholar
  7. 7.
    Lipinsky ES, Sinclair RG (1986) Chem Eng Prog 82:26Google Scholar
  8. 8.
    Meinander K, Niemi M, Hakola JS, Selin JF (1997) Macromol Symp 123:133CrossRefGoogle Scholar
  9. 9.
    Witt U, Einig T, Yamamoto M et al (2001) Chemosphere 44:289CrossRefGoogle Scholar
  10. 10.
    Gan ZH, Kuwabara K, Yamamoto M et al (2004) Polym Degrad Stab 83:289CrossRefGoogle Scholar
  11. 11.
    Kim J, Kim JH, Shin TK (2001) Eur Polym J 37:2131CrossRefGoogle Scholar
  12. 12.
    Choi HJ, Park SH, Yoon JS (1995) Polym Eng Sci 35(20):1636CrossRefGoogle Scholar
  13. 13.
    Guan J, Fang Q, Hanna MA (2004) J Polym Environ 12(2):57CrossRefGoogle Scholar
  14. 14.
    Zhang JW, Jiang L, Zhu LY (2006) Biomacromolecules 7:1551CrossRefGoogle Scholar
  15. 15.
    Jiang L, Wolcott MP, Zhang J (2006) Biomacromolecules 7(1):199CrossRefGoogle Scholar
  16. 16.
    Bhatia A, Gupta RK, Bhattacharya SN, Choi HJ (2007) Korea-Australia Rheol J 19(3):125Google Scholar
  17. 17.
    Ma XF, Yu JG, Wang N (2006) J Polym Sci B Polym Phys 44:94CrossRefGoogle Scholar
  18. 18.
    Wang L, Ma W, Gross RA, McCarthy SP (1998) Polym Degrad Stab 59:161CrossRefGoogle Scholar
  19. 19.
    John J, Bhattacharya M (2000) Polym Int 49:860CrossRefGoogle Scholar
  20. 20.
    Semba T, Kitagawa K, Ishiaku US et al (2006) J Appl Polym Sci 101:1816CrossRefGoogle Scholar
  21. 21.
    Harada M, Ohya T, Iida K (2007) J Appl Polym Sci 106:1813CrossRefGoogle Scholar
  22. 22.
    Wu JS, Yee AF, Mai YW (1994) J Mater Sci 29:4510. doi: CrossRefGoogle Scholar
  23. 23.
    Kunz-Douglass S, Beaumont PWR, Ashby MF (1980) J Mater Sci 15:1109. doi: CrossRefGoogle Scholar
  24. 24.
    Pearson RA, Yee AF (1991) J Mater Sci 26:3828. doi: CrossRefGoogle Scholar
  25. 25.
    Kambour RP, Russell RR (1971) Polymer 12:237CrossRefGoogle Scholar
  26. 26.
    Wu S (1985) Polymer 26:1855CrossRefGoogle Scholar
  27. 27.
    Bucknall CB, Clayton D, Keast WE (1973) J Mater Sci 8:514. doi: CrossRefGoogle Scholar
  28. 28.
    Yee AF, Li D, Li XJ (1993) J Mater Sci 28:6392. doi: CrossRefGoogle Scholar
  29. 29.
    Gu SY, Zhang K, Ren J, Zhan H (2008) Carbohydr Polym. doi: CrossRefGoogle Scholar
  30. 30.
    Hyun YH, Lim ST, Choi HJ et al (2001) Macromolecules 34:8084CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Naiwen Zhang
    • 1
    • 2
  • Qinfeng Wang
    • 1
    • 2
  • Jie Ren
    • 1
    • 2
    Email author
  • Liang Wang
    • 1
    • 2
  1. 1.Institute of Nano- and Bio-Polymeric Materials, School of Material Science and EngineeringTongji UniversityShanghaiPeople’s Republic of China
  2. 2.Key Laboratory of Advanced Civil Engineering MaterialsMinistry of Education, School of Material Science and Engineering, Tongji UniversityShanghaiPeople’s Republic of China

Personalised recommendations