Journal of Materials Science

, Volume 43, Issue 22, pp 7247–7249 | Cite as

Reaction of Li0.33La0.57TiO3 with water

  • J. WolfenstineEmail author
  • J. L. Allen

Recently, there has been an interest in the development of Li-Air batteries for high energy applications. One configuration involves the use of a Li anode in a non-aqueous electrolyte, which is separated from an aqueous electrolyte containing the air cathode by a solid-state Li-ion conducting membrane [1, 2, 3, 4]. One of the major requirements for the membrane is high Li-ion conductivity, which has resulted in renewed interest in the use of LiTi2(PO4)3 (LTP) as a potential membrane [1, 2, 3, 4, 5]. In the above configuration, the chemical stability of the membrane with water is also a major concern. In this regard, the water stability of Al-doped LTP has been investigated by weight loss, X-ray diffraction, and ionic conductivity before and after immersion in distilled water [4, 6]. Cretin et al. [6] found approximately a 0.9% weight loss for a solid Al-doped LTP sample, with a relative density of ~95%, after immersion in distilled water for 100 h at room temperature. Hasegawa et al. [


Ionic Conductivity Inductively Couple Plasma Water Stability TiO3 Sample Inductively Couple Plasma Analysis 



The authors would like to acknowledge the support of the U. S. Army Research Laboratory (ARL) and Mr. Bruce Poese (ARL) for the ICP measurements.


  1. 1.
    Kowalczk I, Read J, Salomon M (2007) Pure Appl Chem 5:851CrossRefGoogle Scholar
  2. 2.
    Visco SJ, Katz BD, Nimon YS, DeJonghe LC (2007) US Patent 7,282,295 B2Google Scholar
  3. 3.
    Wolfenstine J, Foster D, Read J, Allen JL (2008) J Power Sources 182:626CrossRefGoogle Scholar
  4. 4.
    Hasegawa S, Imanishi N, Zhang T, Xie J, Hirano A, Takeda Y, Yamamoto O (2008) J Power Sources. doi: CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Cretin M, Fabry P, Abello L (1995) J Euro Ceram Soc 15:1149CrossRefGoogle Scholar
  7. 7.
    Thokchom JS, Kumar B (2007) J Electrochem Soc 154:A331CrossRefGoogle Scholar
  8. 8.
    Thangadurai V, Weppner W (2006) Ionics 12:81CrossRefGoogle Scholar
  9. 9.
    Inaguma Y, Chen LQ, Itoh M, Nakamura T, Uchida T, Ikuta H, Wakihara M (1993) Solid State Commun 86:689CrossRefGoogle Scholar
  10. 10.
    Thangadurai V, Schwenzel S, Weppner W (2005) Ionics 11:11CrossRefGoogle Scholar
  11. 11.
    Thangadurai V, Weppner W (2005) J Am Ceram Soc 88:411CrossRefGoogle Scholar
  12. 12.
    Popovici IC, Chirila E, Popescu V (2007) J Mater Sci 42:3373. doi: CrossRefGoogle Scholar
  13. 13.
    Jena H, Kutty KVG, Kutty TRN (2005) J Mater Sci 40:4737. doi: CrossRefGoogle Scholar
  14. 14.
    Wang GX, Yao P, Bradhurst DH, Dou SX, Liu HJ (2000) J Mater Sci 35:4289. doi: CrossRefGoogle Scholar
  15. 15.
    Wolfenstine J, Lee U, Allen JL (2006) J Power Sources 154:287CrossRefGoogle Scholar
  16. 16.
    Jamnik J, Maier J (1999) J Electrochem Soc 146:4183CrossRefGoogle Scholar
  17. 17.
    Huggins RA (2002) Ionics 8:300CrossRefGoogle Scholar
  18. 18.
    Ban CW, Choi GM (2001) Solid State Ionics 140:285CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Army Research Laboratory, AMSRD-ARL-SE-DCAdelphiUSA

Personalised recommendations