Journal of Materials Science

, Volume 44, Issue 1, pp 316–322 | Cite as

Structural, optical, and electrical properties of flash-evaporated copper indium diselenide thin films

  • N. M. Shah
  • J. R. Ray
  • V. A. Kheraj
  • M. S. Desai
  • C. J. PanchalEmail author
  • Bharti Rehani


Copper indium diselenide (CuInSe2) compound was synthesized by reacting its elemental components, i.e., copper, indium, and selenium, in stoichiometric proportions (i.e., 1:1:2 with 5% excess selenium) in an evacuated quartz ampoule. Structural and compositional characterization of synthesized pulverized material confirms the polycrystalline nature of tetragonal phase and stoichiometry. CuInSe2 thin films were deposited on soda lime glass substrates kept at different temperatures (300–573 K) using flash evaporation technique. The effect of substrate temperature on structural, morphological, optical, and electrical properties of CuInSe2 thin films were investigated using X-ray diffraction analysis (XRD), atomic force microscopy (AFM), optical measurements (transmission and reflection), and Hall effect characterization techniques. XRD analysis revealed that CuInSe2 thin films deposited above 473 K exhibit (112) preferred orientation of grains. Transmission and reflectance measurements analysis suggests that CuInSe2 thin films deposited at different substrate temperatures have high absorption coefficient (~104 cm−1) and optical energy band gap in the range 0.93–1.02 eV. Results of electrical characterization showed that CuInSe2 thin films deposited at different substrate temperatures have p-type conductivity and hole mobility value in the range 19–136 cm2/Vs. Variation of energy band gap and resistivity of CuInSe2 thin films deposited at 523 K with thickness was also studied. The temperature dependence of electrical conductivity measurements showed that CuInSe2 film deposited at 523 K has an activation energy of ~30 meV.


Atomic Force Microscope Substrate Temperature Hall Effect Measurement Soda Lime Glass Substrate CuInSe2 Film 



N. M. Shah is grateful to University Grants Commission (UGC) (Western Region Office, Pune, India) for the award of teacher fellowship under “Faculty Improvement Program” in X plan. The authors also wish to thank UGC (New Delhi, India) for providing financial assistance through major research project.


  1. 1.
    Repins I, Contreras MA, Egaas B, DeHart C, Scharf J, Perkins CL, To B, Noufi R (2008) Prog Photovolt Res Appl 16(3):235CrossRefGoogle Scholar
  2. 2.
    Akl AAS, Ashour A, Ramadan AA, Abd El Hady K (2001) Vacuum 61:75Google Scholar
  3. 3.
    Klenk M, Schenker O, Alberts V, Bucher E (2001) Thin Solid Films 387:47CrossRefGoogle Scholar
  4. 4.
    Joseph CM, Menon CS (2001) J Phys D Appl Phys 34:1143CrossRefGoogle Scholar
  5. 5.
    Martill I, Santamaria J, Gonzalez-Diaz G, Sanchez-Quesada F (1987) J Appl Phys 62:4163CrossRefGoogle Scholar
  6. 6.
    Abernathy CR, Bates CW, Anani AA, Haba B, Smestad G (1984) Appl Phys Lett 45:890CrossRefGoogle Scholar
  7. 7.
    Huang CJ, Meen TH, Lai MY, Chen WR (2004) Sol Energy Mater Sol Cells 82:553Google Scholar
  8. 8.
    Hodes G, Engelhard T, Cahen D, Kazmerski LL, Herington C R (1985) Thin Solid Films 128:93CrossRefGoogle Scholar
  9. 9.
    Ashour A (2006) J Mater Sci: Mater Electron 17:625Google Scholar
  10. 10.
    Merino JM, Leon M, Rueda F, Diaz R (2000) Thin Solid Films 361–362:22CrossRefGoogle Scholar
  11. 11.
    Barett CS (1953) Structure of Metals, Crystallographic methods, Principles and Data. McGraw-Hill, New York, p 156Google Scholar
  12. 12.
    Noufi R, Axton R, Herrington C, Deb SK (1984) Appl Phys Lett 45(6):668CrossRefGoogle Scholar
  13. 13.
    Dhanam M, Balsundarprabhu R, Jayakumar S, Gopalkrishnan P, Kanan MD (2002) Phys Stat Sol (a) 191:149CrossRefGoogle Scholar
  14. 14.
    Demichelis F, Kaniadakis G, Tagliferro A, Tresso E (1987) J Appl Opt 26:1737CrossRefGoogle Scholar
  15. 15.
    Schmidt J, Roscher HH, Labusch R (1994) Thin Solid Films 251:116CrossRefGoogle Scholar
  16. 16.
    Yamaguchi T, Matsufusa J, Yoshida A (1992) Sol Energy Mater Sol Cells 27:25CrossRefGoogle Scholar
  17. 17.
    Castaneda SI, Rueda F (2000) Thin Solid Films 361:145CrossRefGoogle Scholar
  18. 18.
    Petritz RL (1956) Phys Rev 104(6):1508CrossRefGoogle Scholar
  19. 19.
    Wu F, Chiou BS (1993) Appl Surf Sci 68:497CrossRefGoogle Scholar
  20. 20.
    Moulson AJ (1990) Electroceramics. Wiley, New York, p 26Google Scholar
  21. 21.
    Aissaoui O, Mehdaoui S, Bechiri L, Benebdeslem M, Benslim N, Amara A, Mahdjoubi L, Nouet G (2007) J Phys D Appl Phys 40:5663CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • N. M. Shah
    • 1
  • J. R. Ray
    • 1
  • V. A. Kheraj
    • 1
  • M. S. Desai
    • 1
  • C. J. Panchal
    • 1
    Email author
  • Bharti Rehani
    • 2
  1. 1.Applied Physics Department, Faculty of Technology and EngineeringThe M. S. University of BarodaVadodaraIndia
  2. 2.Metallurgical Engineering Department, Faculty of Technology and EngineeringThe M. S. University of BarodaVadodaraIndia

Personalised recommendations