Advertisement

Journal of Materials Science

, Volume 44, Issue 1, pp 274–279 | Cite as

Raphia hookeri gum as a potential eco-friendly inhibitor for mild steel in sulfuric acid

  • S. A. Umoren
  • I. B. ObotEmail author
  • N. O. Obi-Egbedi
Article

Abstract

Exudate gum from Raphia hookeri (RH) was tested as corrosion inhibitor for mild steel in H2SO4 using weight loss and hydrogen evolution techniques at 30–60 °C. Results obtained revealed that RH act as corrosion inhibitor for mild steel in sulfuric acid medium. The corrosion rates in all concentrations studied increased with rise in temperature. The inhibition efficiency was observed to increase with increase in RH concentration but decreased with rise in temperature, which is suggestive of physical adsorption mechanism. The inhibitive action of RH is discussed in view of the adsorption of its phytochemical components onto steel surface, which protects the metal surface and thus do not permit the corrosion process to take place. The adsorption of the exudate gum onto the steel surface was found to follow the Langmuir adsorption isotherm. The free energies for the adsorption process and the apparent activation energies, enthalpies and entropies of the dissolution process were determined. The fundamental thermodynamic functions were used to glean important information about the RH inhibitory behavior. The results were explained in terms of chemical thermodynamics.

Keywords

Corrosion Rate Mild Steel Apparent Activation Energy Inhibition Efficiency Langmuir Adsorption Isotherm 

References

  1. 1.
    El-Etre AY (2007) J Colloid Interface Sci 314:578CrossRefGoogle Scholar
  2. 2.
    Loto CA, Mohammed AI (2000) Corros Prev Control 47(2):50Google Scholar
  3. 3.
    Gunasekeran G, Chauhan LR (2004) Electrochim Acta 49(25):4387CrossRefGoogle Scholar
  4. 4.
    Kliskic M, Radosevic J, Gudic S, Katalinic V (2000) J Appl Electrochem 30:823CrossRefGoogle Scholar
  5. 5.
    Avwiri GO, Igbo FO (2003) Mater Lett 57:3705CrossRefGoogle Scholar
  6. 6.
    Martinez S, Stern I (2001) J Appl Electrochem 33:1137CrossRefGoogle Scholar
  7. 7.
    Ashassi-Sorkhabi H, Seifzadeh D (2006) Int J Electrochem Sci 1:92Google Scholar
  8. 8.
    Umoren SA, Obot IB, Ebenso EE, Obi-Egbedi NO (2008) Port Electrochim Acta 26:199CrossRefGoogle Scholar
  9. 9.
    Umoren SA, Obot IB, Ebenso EE (2008) E-J Chem 5(2):355CrossRefGoogle Scholar
  10. 10.
    Umoren SA, Obot IB, Akpabio LE, Etuk SE (2008) Pigm Resin Technol 37(2):98CrossRefGoogle Scholar
  11. 11.
    Umoren SA, Obot IB, Ebenso EE, Okafor PC, Ogbobe O, Oguzie EE (2006) Anti-Corros Methods Mater 53(5):277CrossRefGoogle Scholar
  12. 12.
    Umoren SA, Ogbobe O, Ebenso EE (2006) Trans SAEST 41:74Google Scholar
  13. 13.
    Umoren SA, Ogbobe O, Ebenso EE, Ekpe UJ (2006) Pigm Resin Technol 35:284CrossRefGoogle Scholar
  14. 14.
    Umoren SA, Ogbobe O, Ebenso EE (2006) Bull Electrochem 22:155Google Scholar
  15. 15.
    Ekpe UJ, Ebenso EE, Antia BS (1999) West Afr J Biol Appl Chem 41:16Google Scholar
  16. 16.
    Gomma GK (1998) Mater Chem Phys 55:241CrossRefGoogle Scholar
  17. 17.
    Jones AD (1996) Principles and prevention of corrosion, 2nd edn. Printice Hall Inc., Upper Saddle River, NJ, p 31Google Scholar
  18. 18.
    Ebenso EE, Ibok UJ, Ekpe UJ, Umoren SA, Jackson E, Abiola OK, Oforka NC, Martinez S (2004) Trans SAEST 39:117Google Scholar
  19. 19.
    Onuchukwu AI (1988) Mater Chem Phys 20:323CrossRefGoogle Scholar
  20. 20.
    Oguzie EE (2005) Pigm Resin Technol 34(6):321CrossRefGoogle Scholar
  21. 21.
    Bouklah M, Hammouti B (2006) Port Electrochim Acta 24:457CrossRefGoogle Scholar
  22. 22.
    Okafor PC, Ekpe UJ, Ebenso EE, Umoren EM, Leizou KE (2005) Bull Electrochem 8:347Google Scholar
  23. 23.
    Umoren SA, Ebenso EE (2007) Mater Chem Phys 106(2–3):387CrossRefGoogle Scholar
  24. 24.
    Yurt A, Balaban A, Kandermir SU, Bereket G, Erk B (2004) Mater Chem Phys 85:420CrossRefGoogle Scholar
  25. 25.
    Radovici O (1965) Proceedings of the 2nd European symposium on corrosion inhibition, Ferrara, Italy, p 178Google Scholar
  26. 26.
    Martinez S, Metikos-Hukovic M (2003) J Appl Electrochem 33:1137CrossRefGoogle Scholar
  27. 27.
    Popova A, Sokolova E, Raicheva S, Christov M (2003) Corros Sci 45:33CrossRefGoogle Scholar
  28. 28.
    Zucchi F, Trabanelli G, Brunoro G (1994) Corros Sci 36:1683CrossRefGoogle Scholar
  29. 29.
    Bochris JOM, Reddy AKN (1977) Modern electrochemistry, vol 2. Plenum Press, New York, p 1267Google Scholar
  30. 30.
    Tang LB, Mu GN, Liu GH (2003) Corros Sci 45:2251CrossRefGoogle Scholar
  31. 31.
    Bouklah M, Benchat N, Hammouti B, Aouniti A, Kertit S (2006) Mater Lett 60:1901CrossRefGoogle Scholar
  32. 32.
    Bentiss F, Traisnel M, Lagrenee M (2000) Corros Sci 42:127CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceUniversity of UyoUyoNigeria
  2. 2.Department of ChemistryUniversity of IbadanIbadanNigeria

Personalised recommendations