Journal of Materials Science

, Volume 44, Issue 9, pp 2300–2309 | Cite as

Sliding wear properties of high purity copper in cryogenic environment

  • Bikramjit BasuEmail author
  • B. V. Manoj Kumar
  • Paul S. Gilman
Festschrift in honour of Prof T R Anantharaman on the occasion of his 80th birthday


In an effort to understand the influence of cryogenic environment on the friction and wear properties of metallic materials, we performed a series of experiments on high purity work hardened copper (Cu) samples in liquid nitrogen (LN2) environment against steel (bearing grade; SAE 52100) at varying loads and sliding speeds. The load was varied between 10 and 20 N and sliding speed was varied between 0.89 and 1.34 m/s. In our experiments, a reduction in the steady state coefficient of friction (μF) was noted with increasing load (10, 15, 20 N) at the highest sliding speed of 1.34 m/s. High wear rate of the order of 10−4 mm3/Nm was recorded, which was found to be independent of the load/sliding speed. On the basis of the experimental data and the characteristics of the worn surfaces it is confirmed that significant damage accumulation and plowing-induced material removal contribute to the wear losses. It is noteworthy that oxidative wear or mechanically mixed layer (no transfer from steel counter-body) did not occur to any significant extent under the chosen sliding conditions. The characteristics of the wear damage as a result of cryogenic sliding have been discussed with reference to the prevailing stress conditions and contact temperature.


Wear Rate Wear Surface Wear Track Wear Volume Copper Sample 



The authors would like to thank Mr. Ankit Mishra for his assistance with tribological experiments.


  1. 1.
    Nagasawa H, Kato K (1998) Wear 216:179CrossRefGoogle Scholar
  2. 2.
    Casstevens JM, Rylander HG, Eliezer Z (1978) Wear 50:371CrossRefGoogle Scholar
  3. 3.
    Senouci A, Frene J, Zaidi H (1999) Wear 225–229:949CrossRefGoogle Scholar
  4. 4.
    López M, Corredor D, Camurri C, Vergara V, Jiménez J (2005) Mater Charact 55:252CrossRefGoogle Scholar
  5. 5.
    Groza JR, Gibeling JC (1993) Mater Sci Eng A 171:115CrossRefGoogle Scholar
  6. 6.
    Ellis D, Michal G, Orth N (1990) Scr Metal Mater 24:885CrossRefGoogle Scholar
  7. 7.
    Sadykov FA, Barykin NP, Aslanyan IR (1999) Wear 225–229:649CrossRefGoogle Scholar
  8. 8.
    Gleiter H (2000) Acta Mater 48:1CrossRefGoogle Scholar
  9. 9.
    Hughes DA, Hansen N (2001) Phys Rev Lett 87:135503CrossRefGoogle Scholar
  10. 10.
    Hiibner W, Gradt T, Schneider T, Birner H (1998) Wear 216:150CrossRefGoogle Scholar
  11. 11.
    Bill RC, Wisander D (1973) NASA-TN-D-7253; E-7314Google Scholar
  12. 12.
    Khanna R, Basu B (2006) J Mater Res 21:832CrossRefGoogle Scholar
  13. 13.
    Khanna R, Basu B (2007) J Am Ceram Soc 90:2525CrossRefGoogle Scholar
  14. 14.
    Subramonian B, Kato K, Adachi K, Basu B (2005) Tribol Lett 20:263CrossRefGoogle Scholar
  15. 15.
    Ostrovskaya YL, Yukhno TP, Gamulya GD, Vvedenskij YV, Kuleba VI (2001) Tribol Int 34:265CrossRefGoogle Scholar
  16. 16.
    Iwabuchi A, Tatsuyanagi Y, Yoshida K, Sugimoto M (1992) Wear 159:107CrossRefGoogle Scholar
  17. 17.
    Iwabuchi A, Honda T, Tani J (1989) Cryogenics 29:124CrossRefGoogle Scholar
  18. 18.
    Subramonian B, Basu B (2006) Mater Sci Eng A 415:72CrossRefGoogle Scholar
  19. 19.
    Stott FH, Wood GC (1978) Tribol Int 11:211CrossRefGoogle Scholar
  20. 20.
    Quinn TJF (1962) J Appl Phys 13:33Google Scholar
  21. 21.
    Lim CYH, Lim SC, Gupta M (2003) Wear 255:629CrossRefGoogle Scholar
  22. 22.
    Rigney DA, Chen LH, Naylor MGS (1984) Wear 100:195CrossRefGoogle Scholar
  23. 23.
    Rigney DA (2000) Wear 245:1CrossRefGoogle Scholar
  24. 24.
    Godet M (1990) Wear 136:29CrossRefGoogle Scholar
  25. 25.
    Bill RC, Wisander D (1977) Wear 41:351CrossRefGoogle Scholar
  26. 26.
    Kong HS, Ashby MF (1991) Mater Res Soc Bull 16(10):41CrossRefGoogle Scholar
  27. 27.
    Marks LD, Perry SS, Sawyer WG (1960) In: Reed RP, Clark AF (eds) Materials at low temperatures. ASM, Metals ParkGoogle Scholar
  28. 28.
    Bhushan B (1999) Principles and applications of tribology. Wiley, New York, p 205Google Scholar
  29. 29.
    Johnson KL (2001) Contact mechanics. Cambridge University Press, UKGoogle Scholar
  30. 30.
    Humphreys FJ, Hatherly M (1995) Recrystallization and related annealing phenomena. Pergamon Press, UKGoogle Scholar
  31. 31.
    Dragomir IC, Gheorghe M, Thadhani N, Snyder RL (2005) Mater Sci Eng A 402:158CrossRefGoogle Scholar
  32. 32.
    Ni H, Alpas AT (2003) Mater Sci Eng A 361:338CrossRefGoogle Scholar
  33. 33.
    Sarkar J, Gilman PS (2008) Scr Mater 59:301CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Bikramjit Basu
    • 1
    Email author
  • B. V. Manoj Kumar
    • 1
  • Paul S. Gilman
    • 2
  1. 1.Department of Materials and Metallurgical EngineeringIndian Institute of Technology, KanpurKanpurIndia
  2. 2.Praxair ElectronicsNew YorkUSA

Personalised recommendations