Journal of Materials Science

, Volume 43, Issue 22, pp 7013–7025 | Cite as

Microstructure and phase stability in a Nb–Mo–Cr–Al–Si alloy

  • Yan-Ling Hu
  • Alexandre L. Vasiliev
  • Lichun Zhang
  • Kai Song
  • Mark AindowEmail author


The microstructures in as-cast and heat-treated samples of an Nb–27Mo–27Cr–9Al–9Si (in at.%) alloy have been investigated using X-ray diffraction and electron microscopy techniques. The as-cast alloy comprises a dendritic A2 solid solution surrounded by a eutectic mixture of A15 and C14 phases. After heat treatment at 1,000 °C, there is extensive precipitation of A15 and C15 phases within the A2 dendrites, while the A15/C14 eutectic remains essentially unchanged. After heat treatment at 1,500 °C, the precipitates within the A2 phase exhibit the A15 and C14 structures; these are coarser and more equiaxed than those formed at 1,000 °C, and there is also extensive coarsening/spheroidization of the A15/C14 eutectic. Small particles of two unknown phases were also observed within the A2 dendrites in the heat-treated samples. The orientation relationships between the phases have been identified and these are used to deduce the way in which the microstructure develops.


Lave Phase Eutectic Mixture Transmission Electron Microscopy Sample DBTT Transmission Electron Microscopy Specimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to Dr. Dilip M. Shah at Pratt & Whitney for providing us with the alloy samples, and to Dr. Richard McLaughlin at Oxford Instruments for assistance with the EBSD experiments.


  1. 1.
    Liu CT (1995) Mater Chem Phys 42:77CrossRefGoogle Scholar
  2. 2.
    Clemens H, Kestler H (2000) Adv Eng Mater 2:551CrossRefGoogle Scholar
  3. 3.
    Lasalmonie A (2006) Intermetallics 14:1123CrossRefGoogle Scholar
  4. 4.
    Aindow M, Shyue J, Gaspar TA, Fraser HL (1991) Philos Mag Lett 64:59CrossRefGoogle Scholar
  5. 5.
    Hanada S, Murayama Y, Abe Y (1994) Intermetallics 2:155CrossRefGoogle Scholar
  6. 6.
    Hanada S (1997) Curr Opin Solid State Mater Sci 2:279CrossRefGoogle Scholar
  7. 7.
    Kim HS, Kum D, Hanada S (2000) J Mater Sci 35:235. doi: CrossRefGoogle Scholar
  8. 8.
    Takasugi T, Hanada S, Yoshida M (1995) Mater Sci Eng A 192/193:805CrossRefGoogle Scholar
  9. 9.
    Ohta T, Nakagawa Y, Kaneno Y (2003) J Mater Sci 38:657. doi: CrossRefGoogle Scholar
  10. 10.
    Kazantzis AV, Aindow M, Jones IP, Triantafyllidis GK, De Hosson JTM (2007) Acta Mater 55:1873CrossRefGoogle Scholar
  11. 11.
    Kazantzis AV, Aindow M, Triantafyllidis GK, De Hosson JTM (2008) Scr Mater 59:788CrossRefGoogle Scholar
  12. 12.
    Meyer M, Kramer M, Akinc M (1996) Adv Mater 8:85CrossRefGoogle Scholar
  13. 13.
    Chu F, Thoma DJ, McClellan KJ, Peralta P (1999) Mater Sci Eng A 261:44CrossRefGoogle Scholar
  14. 14.
    Shah DM, Anton DL, Pope DP, Chin S (1995) Mater Sci Eng A 192/193:658CrossRefGoogle Scholar
  15. 15.
    Johnson DR (1999) Curr Opin Solid State Mater Sci 4:249CrossRefGoogle Scholar
  16. 16.
    Bewlay BP, Jackson MR, Zhao JC, Subramanian PR (2003) Metall Mater Trans A 34A:2043CrossRefGoogle Scholar
  17. 17.
    Bei H, Pharr GM, George EP (2004) J Mater Sci 39:3975. doi: CrossRefGoogle Scholar
  18. 18.
    Bei H, George EP, Kenik EA, Pharr GM (2003) Acta Mater 51:6241CrossRefGoogle Scholar
  19. 19.
    Duan G, Wang HM (2002) J Mater Sci 37:1981. doi: CrossRefGoogle Scholar
  20. 20.
    Henshall GA, Strum MJ, Bewlay BP, Sutliff JA (1997) Metall Mater Trans A 28:2555CrossRefGoogle Scholar
  21. 21.
    Bencher CD, Murugesh L, Rao KTV, Ritchie RO (1996) Intermetallics 4:23CrossRefGoogle Scholar
  22. 22.
    Tappin DK, Smith LS, Horspool DN, Aindow M (1997) Acta Mater 45:4923CrossRefGoogle Scholar
  23. 23.
    Tabaru T, Hanada S (1999) Intermetallics 7:807CrossRefGoogle Scholar
  24. 24.
    Rong TS, Horspool DN, Aindow M (2002) Intermetallics 10:1CrossRefGoogle Scholar
  25. 25.
    Bewlay BP, Sutliff JA, Jackson MR, Lipsitt HA (1994) Acta Metall Mater 42:2869CrossRefGoogle Scholar
  26. 26.
    Chan KS (1996) Metall Mater Trans A 27A:2518CrossRefGoogle Scholar
  27. 27.
    Bewlay BP, Jackson MR (1996) J Mater Res 11:1917CrossRefGoogle Scholar
  28. 28.
    Kumar KS, Liu CT (1997) Acta Mater 45:3671CrossRefGoogle Scholar
  29. 29.
    Kumar KS, Pang L, Horton JA, Liu CT (2003) Intermetallics 11:677CrossRefGoogle Scholar
  30. 30.
    Chen KC, Allen SM, Livingston JD (1998) Mater Sci Eng A 242:162CrossRefGoogle Scholar
  31. 31.
    Kim WY, Takasugi T (2003) Scr Mater 48:559CrossRefGoogle Scholar
  32. 32.
    Nakagawa Y, Ohta T, Kaneno Y, Inoue H, Takasugi T (2004) Metall Mater Trans A 35:3469CrossRefGoogle Scholar
  33. 33.
    Kumar KS, Pang L, Liu CT, Horton J, Kenik EA (2000) Acta Mater 48:911CrossRefGoogle Scholar
  34. 34.
    Liu CT, Zhu JH, Brady MP, McKamey CG, Pike LM (2000) Intermetallics 8:1119CrossRefGoogle Scholar
  35. 35.
    Tien RH, Zhu JH, Liu CT, Walker LR (2005) Intermetallics 13:361CrossRefGoogle Scholar
  36. 36.
    Mendiratta MG, Dimiduk DM (1991) Scr Metall Mater 25:237CrossRefGoogle Scholar
  37. 37.
    Rigney JD, Lewandowski JJ (1996) Metall Mater Trans A 27A:3292CrossRefGoogle Scholar
  38. 38.
    Bewlay BP, Jackson MR, Lipsitt HA (1996) Metall Mater Trans A 27:3801CrossRefGoogle Scholar
  39. 39.
    Kim WY, Tanaka H, Hanada S (2002) J Mater Sci 37:2885. doi: CrossRefGoogle Scholar
  40. 40.
    Ma CL, Li JG, Tan Y, Tanaka R, Hanada S (2004) Mater Sci Eng A 386:375CrossRefGoogle Scholar
  41. 41.
    Geng J, Tsakiropoulos P, Shao G (2007) Intermetallics 15:270CrossRefGoogle Scholar
  42. 42.
    Schneibel JH, Ritchie RO, Kruzic JJ, Tortorelli PF (2005) Metall Mater Trans A 6:525CrossRefGoogle Scholar
  43. 43.
    Yang Y, Chang YA, Tan L, Cao W (2005) Acta Mater 53:1711CrossRefGoogle Scholar
  44. 44.
    Sakidja R, Perepezko JH (2007) J Nucl Mater 366:407CrossRefGoogle Scholar
  45. 45.
    Brady MP, Liu CT, Zhu JH, Tortorelli PF, Walker LR (2005) Scr Mater 52:815CrossRefGoogle Scholar
  46. 46.
    Takasugi T, Yoshida M, Hanada S (1996) Acta Mater 44:669CrossRefGoogle Scholar
  47. 47.
    Brady MP, Gleeson B, Wright IG (2001) JOM 1:16Google Scholar
  48. 48.
    Hu Y-L, Zhang LC, Shuman D, Huey BD, Aindow M (2009) Scr Mater 60 (in press)Google Scholar
  49. 49.
    Cullity BD, Stock SR (2001) Elements of X-Ray diffraction, 3rd edn. Prentice-Hall, New JerseyGoogle Scholar
  50. 50.
    Rabkin E (2005) J Mater Sci 40:875. doi: CrossRefGoogle Scholar
  51. 51.
    Rong TS, Smith LS, Aindow M, Jones IP, Loretto MH (2000) Philos Mag Lett 80:519CrossRefGoogle Scholar
  52. 52.
    MacLaren I, Aindow M (1997) Philos Mag Lett 76:25CrossRefGoogle Scholar
  53. 53.
    Wang YG, Zhang Z, Yan GH, De Hosson JTM (2002) J Mater Sci 37:2511. doi: CrossRefGoogle Scholar
  54. 54.
    Zhang LC, Aindow M (2006) J Mater Sci 41:611. doi: CrossRefGoogle Scholar
  55. 55.
    Cahn JW, Taylor JE (2006) J Mater Sci 41:7669. doi: CrossRefGoogle Scholar
  56. 56.
    King AH, Shekhar S (2006) J Mater Sci 41:7675. doi: CrossRefGoogle Scholar
  57. 57.
    Bendersky LA, Cahn JW (2006) J Mater Sci 41:7683. doi: CrossRefGoogle Scholar
  58. 58.
    Ranganathan S, Srivastava AK, Lord EA (2006) J Mater Sci 41:7696. doi: CrossRefGoogle Scholar
  59. 59.
    Rong TS, Aindow M (1999) Philos Mag Lett 79:93CrossRefGoogle Scholar
  60. 60.
    Shekar NVC, Sahu PC (2006) J Mater Sci 41:3207. doi: CrossRefGoogle Scholar
  61. 61.
    Liu Y, Livingston JD, Allen SM (1992) Metall Trans A 23:3303Google Scholar
  62. 62.
    Chisholm MF, Kumar S, Hazzledine PM (2005) Science 307:701CrossRefGoogle Scholar
  63. 63.
    Kumar KS, Hazzledine PM (2004) Intermetallics 12:763CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yan-Ling Hu
    • 1
  • Alexandre L. Vasiliev
    • 1
    • 2
  • Lichun Zhang
    • 1
  • Kai Song
    • 1
    • 3
  • Mark Aindow
    • 1
    Email author
  1. 1.Materials Science and Engineering Program, Department of Chemical Materials and Biomolecular Engineering, Institute of Materials ScienceUniversity of ConnecticutStorrsUSA
  2. 2.Institute of CrystallographyRussian Academy of SciencesMoscowRussia
  3. 3.Department of Materials Science and EngineeringLehigh UniversityBethlehemUSA

Personalised recommendations