Journal of Materials Science

, Volume 44, Issue 6, pp 1540–1550 | Cite as

Thermal conductivity of multiphase particulate composite materials

  • M. Porfiri
  • N. Q. Nguyen
  • N. GuptaEmail author
Syntactic and Composite Foams


Hollow particle filled composites, called syntactic foams, are used in weight sensitive structural applications in this paper. In this paper, homogenization techniques are used to derive estimates for thermal conductivity of hollow particle filled composites. The microstructure is modeled as a three-phase system consisting of an air void, a shell surrounding the air void, and a matrix material. The model is applicable to composites containing coated solid particles in a matrix material and can be further expanded to include additional coating layers. The model is successful in predicting thermal conductivity of composites containing up to 52% particles by volume. Theoretical results for thermal conductivity are validated with the results obtained from finite element analysis and are found to be in close agreement with them. A simplified approximation of the theoretical model applicable to thin shells is also validated and found to be in good agreement with the corresponding finite element results. The model is applicable to a wide variety of particulate composite materials and will help in tailoring the properties of particulate composites as per the requirements of the application.


Particulate Composite Effective Thermal Conductivity Thin Shell Vinyl Ester Syntactic Foam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the Office of Naval Research grant N00014-07-1-0419 with Dr. Y.D.S. Rajapakse as the Program Manager and by the National Science Foundation Grant CBET-0619193.


  1. 1.
    Narkis M, Kenig S, Puterman M (1984) Polym Compos 5:159CrossRefGoogle Scholar
  2. 2.
    Shutov FA (1991) Syntactic polymeric foams. Hanser Publishers, New YorkGoogle Scholar
  3. 3.
    Bibin J, Nair CPR, Devi KA, Ninan KN (2007) J Mater Sci 42:5398. doi: CrossRefGoogle Scholar
  4. 4.
    Koopman M, Chawla KK, Carlisle KB, Gladysz GM (2006) J Mater Sci 41:4009CrossRefGoogle Scholar
  5. 5.
    Bunn P, Mottram JT (1993) Composites 24:565CrossRefGoogle Scholar
  6. 6.
    Kishore, Shankar R, Sankaran S (2005) Mater Sci Eng A 412:153CrossRefGoogle Scholar
  7. 7.
    Rohatgi P, Kim J, Gupta N, Alaraj S, Daoud A (2006) Compos Part A Appl Sci Manuf 37:430CrossRefGoogle Scholar
  8. 8.
    Balch DK, Dunand DC (2006) Acta Mater 54:1501–1511CrossRefGoogle Scholar
  9. 9.
    Gupta N, Woldesenbet E, Kishore (2002) J Mater Sci 37:3199. doi: CrossRefGoogle Scholar
  10. 10.
    Gupta N, Woldesenbet E, Mensah P (2004) Compos A Appl Sci Manuf 35:103CrossRefGoogle Scholar
  11. 11.
    Gupta N, Nagorny R (2006) J Appl Polym Sci 102:1254CrossRefGoogle Scholar
  12. 12.
    Bardella L, Genna F (2001) Int J Solids Struct 38:7235CrossRefGoogle Scholar
  13. 13.
    Huang JS, Gibson LJ (1993) J Mech Phys Solids 41:55CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Tagliavia G, Porfiri M, Gupta N (2008) J Compos Mater, Accpeted, in printGoogle Scholar
  16. 16.
    Karthikeyan CS, Sankaran S, Kishore (2007) Polym Adv Technol 18:254CrossRefGoogle Scholar
  17. 17.
    Kishore, Shankar R, Sankaran S (2005) J Appl Polym Sci 98:680CrossRefGoogle Scholar
  18. 18.
    Shabde V, Hoo K, Gladysz G (2006) J Mater Sci 41:4061. doi: CrossRefGoogle Scholar
  19. 19.
    Rohatgi PK, Gupta N, Alaraj S (2006) J Compos Mater 40:1163CrossRefGoogle Scholar
  20. 20.
    Rayleigh L (1892) Philos Mag 34:481CrossRefGoogle Scholar
  21. 21.
    McPhedran RC, McKenzie DR (1978) Proc R Soc Lond A 359:45CrossRefGoogle Scholar
  22. 22.
    McKenzie DR, McPhedran RC, Derrick GH (1978) Proc R Soc Lond A 362:211CrossRefGoogle Scholar
  23. 23.
    Cheng H, Torquato S (1997) Proc R Soc Lond A 453:145CrossRefGoogle Scholar
  24. 24.
    Nicorovici NA, McPhedran RC, Milton GW (1994) Proc R Soc Lond A 442:599CrossRefGoogle Scholar
  25. 25.
    Moosavi A, Sarkomaa P, Polashenski W (2003) Appl Phys A Mater Sci Process 77:441CrossRefGoogle Scholar
  26. 26.
    Awrejcewicz J, Andrianov IV, Manevitch LI (1998) Asymptotic approaches in nonlinear dynamics. Springer, BerlinCrossRefGoogle Scholar
  27. 27.
    Cioranescu D, Saint Jean Paulin J (1999) Homogenization of reticulated structures. Springer, BerlinCrossRefGoogle Scholar
  28. 28.
    Torquato S (2001) Random heterogeneous materials: microstructure and macroscopic properties. Springer, BerlinGoogle Scholar
  29. 29.
    Pal R (2005) Mater Sci Eng A 412:71CrossRefGoogle Scholar
  30. 30.
    Pal R (2005) Compos B Eng 36:513CrossRefGoogle Scholar
  31. 31.
    Carson JK, Lovatt SJ, Tanner DJ, Cleland AC (2005) Int J Heat Mass Trans 48:2150CrossRefGoogle Scholar
  32. 32.
    Kristensson G (2003) Progr Electromagnet Res 42:1CrossRefGoogle Scholar
  33. 33.
    Fiedler T, Solrzano E, Ochsner A (2008) Mater Lett 62:1204CrossRefGoogle Scholar
  34. 34.
    Liang J, Li FH (2007) Polym Test 26:419CrossRefGoogle Scholar
  35. 35.
    Song YS, Youn JR (2006) Carbon 44:710CrossRefGoogle Scholar
  36. 36.
    Rankin RA (1963) An introduction to mathematical anlaysis. Pergamon Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringPolytechnic Institute of New York UniversityBrooklynUSA

Personalised recommendations