Advertisement

Journal of Materials Science

, Volume 43, Issue 22, pp 7026–7034 | Cite as

Preparation, characterization and photocatalytic properties of nanoplate Bi2MoO6 catalysts

  • HongHua Li
  • ChaoYu Liu
  • KunWei Li
  • Hao Wang
Article

Abstract

Bismuth molybdate (Bi2MoO6) nanoplates have been successfully synthesized by a simple hydrothermal process. The nanoplates were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and IR spectroscopy. The effects of hydrothermal temperature and reaction time on the structures and morphologies of the nanoplates were investigated. On the basis of TEM observation of time series samples, a possible formation mechanism of the nanoplates was proposed. Optical absorption experiments revealed that Bi2MoO6 nanoplates had absorption in visible-light region, but a blue shift appeared compared with the corresponding bulk materials. Photocatalytic experiments showed that the nanoplates exhibited good photocatalytic activities for degradation of N,N,N′,N′-tetraethylated rhodamine (RhB) under visible-light irradiation (λ > 420 nm).

Keywords

Total Organic Carbon Photocatalytic Activity Hydrothermal Temperature Bismuth Molybdate Excellent Photocatalytic Activity 

References

  1. 1.
    Fujishima A, Honda K (1972) Nature 238:37CrossRefGoogle Scholar
  2. 2.
    Fujishima A, Rao TND, Tryk A (2000) J Photochem Photobiol C 1:1CrossRefGoogle Scholar
  3. 3.
    Domen K, Kondo J, Hara M, Takata T (2000) Bull Chem Soc Jpn 73:1307CrossRefGoogle Scholar
  4. 4.
    Kudo A (2007) Int J Hydrogen Energy 32:2673CrossRefGoogle Scholar
  5. 5.
    Kudo A, Kato H, Tsuji I (2004) Chem Lett 33:1534CrossRefGoogle Scholar
  6. 6.
    Kudo A (2003) Catal Surv Asia 7:31CrossRefGoogle Scholar
  7. 7.
    Kendall KR, Navas C, Thomas JK, Zur Loye HC (1996) Chem Mater 8:642CrossRefGoogle Scholar
  8. 8.
    Tsunoda Y, Shirata M, Sugimoto W, Liu Z, Terasaki O, Kuroda K, Sugahara Y (2001) Inorg Chem 40:5768CrossRefGoogle Scholar
  9. 9.
    Kim JY, Chung I, Choy JH, Park GS (2001) Chem Mater 13:2759CrossRefGoogle Scholar
  10. 10.
    Tsunoda Y, Sugimoto W, Sugahara Y (2003) Chem Mater 15:632CrossRefGoogle Scholar
  11. 11.
    Buttrey D, Vogt T, White B (2000) J Solid State Chem 155:206CrossRefGoogle Scholar
  12. 12.
    Ricote J, Pardo L, Castro A, Millan P (2001) J Solid State Chem 160:54CrossRefGoogle Scholar
  13. 13.
    Sim LT, Lee CK, West AR (2002) J Mater Chem 12:17CrossRefGoogle Scholar
  14. 14.
    Murugan R (2004) Phys B 352:227CrossRefGoogle Scholar
  15. 15.
    Hartmanova M, Le M, Van Driessche I, Hoste S, Kundracik F (2005) Russ J Electrochem 41:455CrossRefGoogle Scholar
  16. 16.
    Le M, Kovanda M, Myslik V, Vrnata M, Driessche I, Hoste S (2006) Thin Solid Films 497:284CrossRefGoogle Scholar
  17. 17.
    Jung J, Kim H, Kim Y, Chung Y, Kim T, Lee S, Oh S, Song I (2007) Catalytic performance of bismuth molybdate catalysts in the oxidative dehydrogenation of C4 raffinate-3 to 1, 3-butadiene. Appl Catal A 317:244CrossRefGoogle Scholar
  18. 18.
    Keulks GW, Rosynek MP, Daniel C (1971) Ind Eng Chem Prod Res Develop 10:138CrossRefGoogle Scholar
  19. 19.
    Klisinska A, Mamede AS, Gaigneaux EM (2007) Catal Today 128:145CrossRefGoogle Scholar
  20. 20.
    Yu J, Kudo A (2005) Chem Lett 34:1528CrossRefGoogle Scholar
  21. 21.
    Shimodaira Y, Kato H, Kobayashi H, Kudo A (2006) J Phys Chem B 110:17790CrossRefGoogle Scholar
  22. 22.
    Bi J, Wu L, Li J, Li Z, Wang X, Fu X (2007) Acta Mater 55:4699CrossRefGoogle Scholar
  23. 23.
    Xie L, Ma J, Xu G (2008) Mater Sci Commun 110:197Google Scholar
  24. 24.
    Cruz A, Alfaro S, Cuéllar E, Méndez U (2007) Catal Today 129:194CrossRefGoogle Scholar
  25. 25.
    Zhao X, Qu J, Liu H, Hu C (2007) Environ Sci Technol 41:6802CrossRefGoogle Scholar
  26. 26.
    Niu X, Li H, Liu G (2005) J Mol Catal A 232:89CrossRefGoogle Scholar
  27. 27.
    Hardcastle F, Wachs I (1991) J Phys Chem 95:10763CrossRefGoogle Scholar
  28. 28.
    Graves P, Hua G, Myhra S, Thompson J (1995) J Solid State Chem 114:112CrossRefGoogle Scholar
  29. 29.
    Yu SH, Liu B, Mo MS, Huang JH, Liu XM, Qian YT (2003) Adv Funct Mater 13:639CrossRefGoogle Scholar
  30. 30.
    Mullin JW (1997) Crystallization, 3rd edn. Butterworth-Heinemann, Oxford, UKGoogle Scholar
  31. 31.
    Peng Z, Peng X (2002) J Am Chem Soc 124:3343CrossRefGoogle Scholar
  32. 32.
    Butler M (1977) J Appl Phys 48:1914CrossRefGoogle Scholar
  33. 33.
    Ball P, Garwin L (1992) Nature 355:761CrossRefGoogle Scholar
  34. 34.
    Zhang C, Zhu Y (2005) Chem Mater 17:3537CrossRefGoogle Scholar
  35. 35.
    Zhang L, Chen D, Jiao X (2006) J Phys Chem B 110:2668CrossRefGoogle Scholar
  36. 36.
    Watanabe T, Takizawa T, Honda K (1977) J Phys Chem 81:1845CrossRefGoogle Scholar
  37. 37.
    Inoue T, Watanabe T, Fujishima A, Honda K, Kohayakawa K (1977) J Electrochem Soc 124:719CrossRefGoogle Scholar
  38. 38.
    Yoshino M, Kakihana M (2002) Chem Mater 14:3369CrossRefGoogle Scholar
  39. 39.
    Zou Z, Ye J, Arakawa H (2002) J Phys Chem B 106:517CrossRefGoogle Scholar
  40. 40.
    Carrazan S, Martin C, Rives V, Vidal R (1996) Spectrochim Acta A 52:1107CrossRefGoogle Scholar
  41. 41.
    Trifiro F, Hoser H, Scarle R (1972) J Catal 25:12CrossRefGoogle Scholar
  42. 42.
    Kovats W, Hill CG Jr (1986) Appl Spectrosc 40:1215CrossRefGoogle Scholar
  43. 43.
    Xu T, Zhao X, Zhu Y (2006) J Phys Chem B 110:25825CrossRefGoogle Scholar
  44. 44.
    Lin J, Lin J, Zhu Y (2007) Inorg Chem 46:8372CrossRefGoogle Scholar
  45. 45.
    Li ZS, Yu T, Zou ZG, Ye JH (2006) Appl Phys Lett 88:071917CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.The College of Materials Science and EngineeringBeijing University of TechnologyBeijingChina

Personalised recommendations