Journal of Materials Science

, Volume 43, Issue 22, pp 7047–7056 | Cite as

Production and mechanical properties of SiCp particle-reinforced 2618 aluminum alloy composites

  • A. Sakthivel
  • R. Palaninathan
  • R. VelmuruganEmail author
  • P. Raghothama Rao


In this study, 2618 aluminum alloy metal matrix composites (MMCs) reinforced with two different sizes and weight fractions of SiCp particles upto 10% weight were fabricated by stir cast method and subsequent forging operation. The effects of SiCp particle content and size of the particles on the mechanical properties of the composites such as hardness, tensile strength, hot tensile strength (at 120 °C), and impact strength were investigated. The density measurements showed that the samples contained little porosity with increasing weight fraction. Optical microscopic observations of the microstructures revealed uniform distribution of particles and at some locations agglomeration of particles and porosity. The results show that hardness and tensile strength of the composites increased, with decreasing size and increasing weight fraction of the particles. The hardness and tensile strength of the forged composites were higher than those of the cast samples.


Metal Matrix Composite Ceramic Particle Brinell Hardness Stirrer Speed Izod Impact Test 



The authors wish to express gratitude to HAL (Hindustan Aeronautics Limited), Bangalore, India for providing the facilities to carry out experiments, pertaining to this study.


  1. 1.
    Surappa MK, Rohatgi RK (1981) J Mater Sci 16:983CrossRefGoogle Scholar
  2. 2.
    Hanumanth GS, Iron GA (1993) J Mater Sci 28:2459CrossRefGoogle Scholar
  3. 3.
    Sahin Y, Murphy S (2014) J Mater Sci 34(1996):5399Google Scholar
  4. 4.
    Papazian JM, Adler PN (1990) Metall Trans 21A:401CrossRefGoogle Scholar
  5. 5.
    Carcalho MH, Marcelo T, Carvalhinos H, Cellars CM (1992) J Mater Sci 27:2101CrossRefGoogle Scholar
  6. 6.
    Ceschini L, Minak G, Morri A (2006) Compos Sci Technol 66:333CrossRefGoogle Scholar
  7. 7.
    Shorowordi KM, Laoui T, Hasseb ASMA, Celis JP, Froyen L (2003) J Mater Process Technol 142:738CrossRefGoogle Scholar
  8. 8.
    Srivatsan TS, Al-Hajri M (2002) Compos Part B 33:391CrossRefGoogle Scholar
  9. 9.
    Gibson PR, Clegg AJ, Das AA (1985) Mater Sci Technol 1:558CrossRefGoogle Scholar
  10. 10.
    Dellis MA, Keastenmans JP, Dellanay F (1991) Materi Sci Eng 135A:253CrossRefGoogle Scholar
  11. 11.
    Rohatgi PK (1991) J Metals 43(4):10Google Scholar
  12. 12.
    Kocazac MJ, Khatri SC, Allison JE, Bader MG et al (1993) In: Suresh S et al (eds) Fundamentals of metal matrix composites, Butterworths, Guildford, UK, p 267Google Scholar
  13. 13.
    Srivatsan TS, Ibrahim IA, Mohamed FA, Lavernia EJ (1991) J Mater Sci 26:5965CrossRefGoogle Scholar
  14. 14.
    Sahin Y, Kok M, Celik H (2002) J Mater Process Technol 128:280CrossRefGoogle Scholar
  15. 15.
    Taha MA, El-Mahallawy NA (1998) J Mater Process Technol 73:139CrossRefGoogle Scholar
  16. 16.
    Delannay F, Froyan L, Deruyttere A (1987) J Mater Sci 22:1CrossRefGoogle Scholar
  17. 17.
    Seo YH, Kang CG (1985) J Mater Process Technol 55:370CrossRefGoogle Scholar
  18. 18.
    Davidson AM, Regener D (2000) Compos Sci Technol 60:865CrossRefGoogle Scholar
  19. 19.
    Rohatgi PK, Sathyamoorthy R, Narendranath CS, Nath D (1993) AFS Trans 101:597Google Scholar
  20. 20.
    Tszeng TC (1998) Compos: Part B 29B:299CrossRefGoogle Scholar
  21. 21.
    Girot FA, Quenisset JM, Naslain R (1987) Compos Sci Technol 30:155CrossRefGoogle Scholar
  22. 22.
    Lianxi H, Shoujing L, Wencan H, Wang ZR (1995) J Mater Process Technol 49:287CrossRefGoogle Scholar
  23. 23.
    Cavaliere P, Cerri E, Evangelista E (2004) J Alloy Compd 378(1–2):117CrossRefGoogle Scholar
  24. 24.
    Xu H, Palmiere EJ (1999) Compos Part A 30:203CrossRefGoogle Scholar
  25. 25.
    Thomas MP, King JE (1996) Compos Sci Technol 56:1141CrossRefGoogle Scholar
  26. 26.
    Kok M (2005) J Mater Process Technol 161:381CrossRefGoogle Scholar
  27. 27.
    Harnby N, Edward MF, Nienow AW (1985) Mixing in process industries. Butterworths, LondonGoogle Scholar
  28. 28.
    Hashim J, Looney L, Hashmi MSJ (1999) J Mater Process Technol 92–93:1CrossRefGoogle Scholar
  29. 29.
    Naher S, Brabazon D, Looney L (2003) J Mater Process Technol 143–144:567CrossRefGoogle Scholar
  30. 30.
    Hashim J, Looney L, Hashmi MSJ (2002) J Mater Process Technol 123:258CrossRefGoogle Scholar
  31. 31.
    Ozden S, Ekici R, Nair F (2007) Compos Part A 38(2):484CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • A. Sakthivel
    • 1
  • R. Palaninathan
    • 1
  • R. Velmurugan
    • 2
    Email author
  • P. Raghothama Rao
    • 3
  1. 1.Department of Applied MechanicsIndian Institute of Technology, MadrasChennaiIndia
  2. 2.Composite Technology CentreIndian Institute of Technology, MadrasChennaiIndia
  3. 3.CEMILAC, DRDOBangaloreIndia

Personalised recommendations