Advertisement

Journal of Materials Science

, Volume 43, Issue 22, pp 7035–7046 | Cite as

Hierarchical description of deformation in block copolymer TPEs

  • Mohit Mamodia
  • Kishore Indukuri
  • Edward T. Atkins
  • Wim H. De Jeu
  • Alan J. LesserEmail author
Article

Abstract

We report on the deformation behavior of commercially relevant lamellar and cylindrical tri-block copolymers poly (styrene-b-ethylene-co-butylene-b-styrene) (SEBS) with two different compositions. The structural changes that occur at various length scales have been studied using a simultaneous small- and wide-angle X-ray scattering (SAXS/WAXS) during uni-axial tensile deformation of the polygrain samples. SAXS provides information about changes that occur upon deforming the glassy cylindrical or lamellar PS domains. WAXS, on the other hand, is sensitive to the crystallographic structure of the rubbery mid-block. Deformation calorimetry has been used to determine the energetics involved. The combined results from the various techniques indicate that the deformation takes place in three stages. First, at small strains, dilation occurs in the rubbery phase. At intermediate strains, the hard lamellar or cylindrical domains undergo micro-buckling, which is associated with a downturn in the stress–strain curve. Finally, we interpret that at higher strains, the bent lamellar/cylindrical domains rotate in the stretching direction resulting in a significant shear on the rubbery mid-block. This in turn leads to strain-induced crystallization in these materials. Although we could not prove it by WAXS, deformation calorimetry (which is more sensitive than the WAXS) was utilized to show its presence.

Keywords

WAXS Pattern Cylindrical Domain SAXS Pattern Lamellar System Cross Pattern 

Notes

Acknowledgement

The authors thank Center for University of Massachusetts and Industry Research on Polymers (CUMIRP) Cluster-M and Kraton Polymers U. S. LLC for their support and the National Science Foundation Materials Research Science and Engineering Center for their financial support.

References

  1. 1.
    Holden G, Legge NR, Quirk R, Schroeder HE (1996) Thermoplastic elastomers, 2nd edn. Hanser Publishers, CincinnatiGoogle Scholar
  2. 2.
    Honeker CC, Thomas EL (1996) Chem Mater 8:1702CrossRefGoogle Scholar
  3. 3.
    Honeker CC, Thomas EL (2000) Macromolecules 33:9407CrossRefGoogle Scholar
  4. 4.
    Honeker CC, Thomas EL, Albalak RJ, Hajduk DA, Gruner SM, Capel MC (2000) Macromolecules 33:9395CrossRefGoogle Scholar
  5. 5.
    Yamaoka I, Kimura M (1993) Polymer 34:4399CrossRefGoogle Scholar
  6. 6.
    Odell JA, Keller A (1977) Polym Eng Sci 17(8):544CrossRefGoogle Scholar
  7. 7.
    Sakamoto J, Sakurai S, Doi K, Nomura S (1993) Polymer 34:4837CrossRefGoogle Scholar
  8. 8.
    Seguela R, Prud´ homme J (1981) Macromolecules 14:197CrossRefGoogle Scholar
  9. 9.
    Sakurai S, Momii T, Taie K, Shibayama M, Nomura S (1993) Macromolecules 26:485CrossRefGoogle Scholar
  10. 10.
    Sakurai S, Kawada H, Hashimoto T (1993) Macromolecules 26:5796CrossRefGoogle Scholar
  11. 11.
    Sakurai S, Sakamoto J, Shibayama M, Nomura S (1993) Macromolecules 26:3351CrossRefGoogle Scholar
  12. 12.
    Pakula T, Saijo K, Kawai H, Hashimoto T (1985) Macromolecules 18:1294CrossRefGoogle Scholar
  13. 13.
    Cohen Y, Albalak RJ, Dair BJ, Capel MS, Thomas EL (2000) Macromolecules 33:6502CrossRefGoogle Scholar
  14. 14.
    Cohen Y, Brinkmann M, Thomas EL (2001) J Chem Phys 114(2):984CrossRefGoogle Scholar
  15. 15.
    Keller A, Odell JA (1985) In: Folkes MJ (ed) Processing structure and properties of block copolymers. Elsevier Applied Science Publishers, p 29Google Scholar
  16. 16.
    Stribeck N, Buzdugan E, Ghioca P, Serban S, Gehrke R (2002) Macromol Chem Phys 203:636CrossRefGoogle Scholar
  17. 17.
    Murthy NS, Grubb DT (2006) J Polym Sci [B] 44:1277CrossRefGoogle Scholar
  18. 18.
    Tarasov SG, Tsvankin DY, Godovskii Yu K (1978) The structural changes during the deformation of orientated and isotropic butadiene-styrene block copolymers. Vysokomolekulyarnye Soedineniya Seriya A 20(7):1534Google Scholar
  19. 19.
    Read DJ, Duckett RA, Sweeney J, McLeish TCB (1999) J Phys D Appl Phys 32:2087CrossRefGoogle Scholar
  20. 20.
    Sierra CA, Galan C, Fatou JG, Parellada MD, Barrio JA (1997) Polymer 38(17):4325CrossRefGoogle Scholar
  21. 21.
    Indukuri KK, Lesser AJ (2005) Polymer 46:7218CrossRefGoogle Scholar
  22. 22.
    Indukuri KK (2005) Polymer science and engineering. University of Massachusetts Amherst, AmherstGoogle Scholar
  23. 23.
    Lyon RE, Rabolin PJ (1995) J Therm Anal Calorim 44(4):777CrossRefGoogle Scholar
  24. 24.
    Lyon RE, Rabolin PJ, (1984) Polymer science and engineering, University of Massachusetts Amherst, AmherstGoogle Scholar
  25. 25.
    Lyon RE, Farris RJ (1984) Polym Sci Eng 25:908CrossRefGoogle Scholar
  26. 26.
    Lyon RE, Wang DX, Farris RJ, MacKnight WJ (1984) J Appl Polym Sci 29(9):2857CrossRefGoogle Scholar
  27. 27.
    Shibayama M, Hashimoto T, Kawai H (1983) Macromolecules 16:16CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Mohit Mamodia
    • 1
  • Kishore Indukuri
    • 1
  • Edward T. Atkins
    • 1
  • Wim H. De Jeu
    • 1
  • Alan J. Lesser
    • 1
    Email author
  1. 1.Department of Polymer Science and EngineeringUniversity of MassachusettsAmherstUSA

Personalised recommendations