Advertisement

Journal of Materials Science

, Volume 43, Issue 22, pp 7141–7147 | Cite as

Structure characterization of hydration products generated by alkaline activation of granulated blast furnace slag

  • Yao Jun ZhangEmail author
  • Yong Lin Zhao
  • Hai Hong Li
  • De Long Xu
Article

Abstract

The hydration mechanism and mineral phase structures by waterglass activation of granulated blast furnace slag (GBFS) are investigated in detail by means of XRD and FTIR. The results show that the network structures of glassy phases are disintegrated and there is not any new material phase formed in the early stage of hydration processes. With evolution of hydration, the polycondensation reaction takes place between [SiO4]4− and [AlO4]5− species and some new mineral phases are produced. A hydration mechanism for the formation of geopolymer by waterglass activation of GBFS is proposed in detail.

Keywords

Geopolymer Ordinary Portland Cement Hydration Product Calcium Silicate Hydrate Waterglass 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) (No. 20050698034) and the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (No. 200555).

References

  1. 1.
    Duxson P, Provis JL, Lukey GC, Van Deventer JSJ (2007) Cem Concr Res 37:1590CrossRefGoogle Scholar
  2. 2.
    Glukhovsky VD (1959) Soil silicates. Gosstroyizdat USSR, Kiev, in RussianGoogle Scholar
  3. 3.
    Krivenko PV, Skurchinskaya J (1991) In: Proceedings of the international conference on the utilization of fly ash and other coal combustion by-products, Shanghai, pp 64.1–64.7Google Scholar
  4. 4.
    Krivenko PV, Kovalchuk GY (2002) Innovations and developments in concrete materials and construction. In: proceedings of the international conference on challenges of concrete construction, Dundee, pp 123–132Google Scholar
  5. 5.
    Usherov-Marshak AV, Krivenko PV, Pershina LA (1998) Cem Concr Res 28(9):1289CrossRefGoogle Scholar
  6. 6.
    Khate D, Chaudhary R (2007) J Mater Sci 42:729. doi: https://doi.org/10.1007/s10853-006-0401-4 CrossRefGoogle Scholar
  7. 7.
    Komnitsas K, Zaharak D (2007) Miner Eng 20:1261CrossRefGoogle Scholar
  8. 8.
    Duxson P, Fernandez-Jimenez A, Provis JL, Lukey GC, Palomo A, Van Deventer JSJ (2007) J Mater Sci 42:2917. doi: https://doi.org/10.1007/s10853-006-0637-z CrossRefGoogle Scholar
  9. 9.
    Roy DM (1999) Cem Concr Res 29:249CrossRefGoogle Scholar
  10. 10.
    Van Deventer JSJ, Provis JL, Duxson P, Lukey GC (2007) J Hazard Mater 139:506CrossRefGoogle Scholar
  11. 11.
    Krivenko PV, Kovalchuk GY (2007) J Mater Sci 42:2944. doi: https://doi.org/10.1007/s10853-006-0528-3 CrossRefGoogle Scholar
  12. 12.
    Davidovits J (1991) J Therm Anal 37:1633CrossRefGoogle Scholar
  13. 13.
    Pereira CF, Luna Y, Querol X, Antenucci D, Vale J (2008) Waste stabilization/solidification of an electric arc furnace dust using fly ash-based geopolymers. Fuel. doi: https://doi.org/10.1016/j.Fuel.2008.01.021 CrossRefGoogle Scholar
  14. 14.
    Panagiotopoulou Ch, Kontori E, Perraki Th, Kakali G (2007) J Mater Sci 42:2967. doi: https://doi.org/10.1007/s10853-006-0531-8 CrossRefGoogle Scholar
  15. 15.
    Yip CK, Lukey GC, Van Deventer JSJ (2005) Cem Concr Res 35:1688CrossRefGoogle Scholar
  16. 16.
    Yip CK, Lukey GC, Van Deventer JSJ (2004) Ceram Trans 153:187Google Scholar
  17. 17.
    Yip CK, Van Deventer JSJ (2003) J Mater Sci 38:3851. doi: https://doi.org/10.1023/A:1025904905176 CrossRefGoogle Scholar
  18. 18.
    Cheng TW, Chiu JP (2003) Miner Eng 16:205CrossRefGoogle Scholar
  19. 19.
    Song S, Sohn D, Jennings HM, Mason TO (2000) J Mater Sci 35:249. doi: https://doi.org/10.1023/A:1004742027117 CrossRefGoogle Scholar
  20. 20.
    Sagoe-Crentsil K, Weng L (2007) J Mater Sci 42:3007. doi: https://doi.org/10.1007/s10853-006-0818-9 CrossRefGoogle Scholar
  21. 21.
    Schneider J, Cincotto MA, Panepucci H (2001) Cem Concr Res 31:993CrossRefGoogle Scholar
  22. 22.
    Bakharev T (2005) Cem Concr Res 35:658CrossRefGoogle Scholar
  23. 23.
    Feng D, Tan H, Van Deventer JS (2004) J Mater Sci 39:571. doi: https://doi.org/10.1023/B:JMSC.0000011513.87316.5c CrossRefGoogle Scholar
  24. 24.
    Yousuf M, Mollah A, Hess TR, Tsai YN, Cocke DL (1993) Cem Concr Res 23:773CrossRefGoogle Scholar
  25. 25.
    Perera DS, Uchida O, Vance ER, Finnie KS (2007) J Mater Sci 42:3099. doi: https://doi.org/10.1007/s10853-006-0533-6 CrossRefGoogle Scholar
  26. 26.
    Lee WKW, Van Deventer JSJ (2002) Colloids Surf A Physicochem Eng Asp 211:115CrossRefGoogle Scholar
  27. 27.
    Weng L, Sagoe-Crentsil K (2007) J Mater Sci 42:2997. doi: https://doi.org/10.1007/s10853-006-0820-2 CrossRefGoogle Scholar
  28. 28.
    Silva PD, Sagoe-Crenstil K, Sirivivatnanon V (2007) Cem Concr Res 37:512CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yao Jun Zhang
    • 1
  • Yong Lin Zhao
    • 1
  • Hai Hong Li
    • 1
  • De Long Xu
    • 1
  1. 1.College of Material Science and EngineeringXi’an University of Architecture and TechnologyXi’anPeople’s Republic of China

Personalised recommendations