Journal of Materials Science

, Volume 43, Issue 22, pp 7184–7191 | Cite as

A facile template-free approach to metal oxide spheres with well-defined nanopore structures

  • Lingxia Zhang
  • Chichao Yu
  • Jianhua Gao
  • Hangrong Chen
  • Jianlin Shi


Nanoporous Al2O3 with well-defined pore structure, crystallized framework and spherical morphology has been prepared by a facile template-free approach, which involves the preparation via homogeneous precipitation and subsequent decomposition of spherical basic aluminium sulphate particles. The particle size of the spheres can be tuned by controlling the holding time from the beginning of precipitation, and a proper decomposition temperature is important to get high surface area, high pore volume and well-defined pore structures. By the similar way, nanoporous ZrO2 and TiO2 spherical particles can also be prepared. These nanoporous oxides all have moderately high surface area (50–70 m2/g) and well-defined nanopores of around 4–12 nm with very narrow pore size distribution. The frameworks of these oxide spheres consist of many small nanocrystallites, between which the nanopores exist. Compared with the soft and hard template routes, this decomposition strategy of sulphates for nanoporous oxides has the advantages of simplicity and low cost.


TiO2 Calcination Temperature Aluminium Hydroxide Narrow Pore Size Distribution Homogeneous Precipitation 



The authors gratefully acknowledge the financial supports from the National Science Foundation of China (Grant No. 50702072, 20703055, 20633090), the Shanghai Rising Star Project (Grant No. 08QA14074).


  1. 1.
    Shi JL, Hua ZL, Zhang LX (2004) J Mater Chem 5:795CrossRefGoogle Scholar
  2. 2.
    Chen HR, Shi JL, Li YS, Yan JN, Hua ZL, Chen HG, Yan DS (2003) Adv Mater 15:1078CrossRefGoogle Scholar
  3. 3.
    Yin DH, Qin LS, Liu HF (2005) J Mol Catal A Chem 240:40Google Scholar
  4. 4.
    Sun J, Gao L, Zhang QH (2003) J Am Ceram Soc 86:1677CrossRefGoogle Scholar
  5. 5.
    Bakardjieva S, Šubrt J, Štengl V, Dianez MJ, Sayagues MJ (2005) Appl Catal B Environ 58:193CrossRefGoogle Scholar
  6. 6.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710CrossRefGoogle Scholar
  7. 7.
    Yang P, Zhao DY, Margolese DI, Chmelka BF, Stucky GD (1998) Nature 396:152CrossRefGoogle Scholar
  8. 8.
    Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548CrossRefGoogle Scholar
  9. 9.
    Ryoo R, Joo SH, Kruk M, Jaroniec M (2001) Adv Mater 13:677CrossRefGoogle Scholar
  10. 10.
    Ying JY, Mehnert CP, Wong MS (1999) Angew Chem Int Ed 38:56CrossRefGoogle Scholar
  11. 11.
    Tian BZ, Liu XY, Yang HF, Xie SH, Yu CZ, Tu B, Zhao DY (2003) Adv Mater 15:1370CrossRefGoogle Scholar
  12. 12.
    Tian BZ, Liu XY, Tu B, Yu CZ, Fan J, Wang LM, Xie SH, Stucky GD, Zhao DY (2003) Nature Mater 2:159CrossRefGoogle Scholar
  13. 13.
    Shi JL, Gao JH (1995) J Mater Sci 30:793CrossRefGoogle Scholar
  14. 14.
    Shi JL, Gao JH, Lin ZX (1989) Solid State Ion 32–33:537CrossRefGoogle Scholar
  15. 15.
    Shi JL, Gao JH, Ruan ML (1992) Chin J Inorg Chem 7:161Google Scholar
  16. 16.
    Adachi-Pagano M, Forano C, Besse JP (2003) J Mater Chem 13:1988CrossRefGoogle Scholar
  17. 17.
    Ada K, Sarikaya Y, Alemdaroglu T, Onal M (2003) Ceram Int 29:513CrossRefGoogle Scholar
  18. 18.
    Ozawa M, Nishio Y (2004) J Alloy Compd 374:397CrossRefGoogle Scholar
  19. 19.
    Ookubo A, Ooi K, Tomita T (1989) J Mater Sci 24:3599CrossRefGoogle Scholar
  20. 20.
    Zanella R, Giorgio S, Henry CR, Louis C (2002) J Phys Chem B 106:7634CrossRefGoogle Scholar
  21. 21.
    Seo DS, Kim H, Jung HC (2003) J Mater Res 18:571CrossRefGoogle Scholar
  22. 22.
    Tas AC, Majewski PJ, Aldinger F (2002) J Am Ceram Soc 85:1421CrossRefGoogle Scholar
  23. 23.
    Bakardjieva S, Šubrt J, Štengl V, Vecernikova E, Bezdicka P (2003) Solid State Phenom 90–91:7CrossRefGoogle Scholar
  24. 24.
    Šubrt J, Boháček J, Štengl V, Grygar T, Bezdička P (1999) Mater Res Bull 34:905CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lingxia Zhang
    • 1
  • Chichao Yu
    • 1
  • Jianhua Gao
    • 1
  • Hangrong Chen
    • 1
  • Jianlin Shi
    • 1
  1. 1.State Key Lab of High Performance and Superfine Microstructure, Shanghai Insitute of CeramicsChinese Academy of ScienceShanghaiPeople’s Republic of China

Personalised recommendations