Journal of Materials Science

, Volume 44, Issue 5, pp 1357–1362 | Cite as

The effect of temperature and humidity on electrospinning

  • S. De VriezeEmail author
  • T. Van Camp
  • A. Nelvig
  • B. Hagström
  • P. Westbroek
  • K. De Clerck


Electrospinning is a process that generates nanofibres. Temperature and humidity affect this process. In this article the influence of humidity and temperature on the formation and the properties of nanofibres are studied using cellulose acetate (CA) and poly(vinylpyrrolidone) (PVP) as target materials. The experiments indicate that two major parameters are dependent of temperature and have their influence on the average fibre diameter. A first parameter is the solvent evaporation rate that increases with increasing temperature. The second parameter is the viscosity of the polymer solution that decreases with increasing temperature. The trend in variation of the average nanofibre diameter as a function of humidity is different for CA and PVP, which can be explained by variations in chemical and molecular interaction and its influence on the solvent evaporation rate. As the humidity increases, the average fibre diameter of the CA nanofibres increases, whilst for PVP the average diameter decreases. The average diameter of nanofibres made by electrospinning change significantly through variation of temperature and humidity.


Cellulose Acetate Fibre Diameter DMAc Salt Bath Vinylpyrrolidone 


  1. 1.
    Formhals A (1934) Process and apparatus for preparing artificial threads. US Patent 1,975,504Google Scholar
  2. 2.
    Miqin Z (2007) Alginate-based nanofibers and related scaffolds. US Patent WO2007112446Google Scholar
  3. 3.
    De Vrieze S et al (2007) J Mater Sci 42:8029. doi: CrossRefGoogle Scholar
  4. 4.
    Frenot A et al (2007) J Appl Polym Sci 103:1473CrossRefGoogle Scholar
  5. 5.
    Gibson PW et al (1999) AICHE J 45:190CrossRefGoogle Scholar
  6. 6.
    Aussawasathien D, Dong JH, Dai L (2005) Synth Met 154:37. doi: CrossRefGoogle Scholar
  7. 7.
    Jin WJ et al (2007) Synth Met 157:454CrossRefGoogle Scholar
  8. 8.
    Yang Y et al (2006) IEEE Trans Dielectr Electr Insul 13:580CrossRefGoogle Scholar
  9. 9.
    Tripatanasuwan S, Zhong Z, Reneker D (2007) Polymer (Guildf) 48:5742. doi: CrossRefGoogle Scholar
  10. 10.
    Givens SR et al (2007) Macromolecules 40:608CrossRefGoogle Scholar
  11. 11.
    Wang C et al (2007) Macromolecules 40:7973CrossRefGoogle Scholar
  12. 12.
    Thompson CJ et al (2007) Polymer 48:6913CrossRefGoogle Scholar
  13. 13.
    Yang QB et al (2004) J Polym Sci Part B-Polym Phys 42:3721CrossRefGoogle Scholar
  14. 14.
    Tungprapa S et al (2007) Cellulose 14:563CrossRefGoogle Scholar
  15. 15.
    Lin K et al (2007) Polymer 48:6384CrossRefGoogle Scholar
  16. 16.
    Greenspan L (1977) J Res Natl Bur Stand 81A:89CrossRefGoogle Scholar
  17. 17.
    Casper L et al (2004) Macromolecules 37:573CrossRefGoogle Scholar
  18. 18.
    Dalton J (1802) Mem Lit Philos Soc 5:535Google Scholar
  19. 19.
    CRC Handbook of Chemistry and Physics, 44th edn, pp 2582–2584Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • S. De Vrieze
    • 1
    Email author
  • T. Van Camp
    • 1
  • A. Nelvig
    • 2
  • B. Hagström
    • 2
  • P. Westbroek
    • 1
  • K. De Clerck
    • 1
  1. 1.Department of TextilesGhent UniversityTechnologiepark 907GhentBelgium
  2. 2.Swerea IVFMolndalSweden

Personalised recommendations