Advertisement

Journal of Materials Science

, Volume 43, Issue 21, pp 6857–6865 | Cite as

Effect of thermo-mechanical treatments on the microstructure of micro-alloyed low-carbon steels

  • M. CabibboEmail author
  • A. Fabrizi
  • M. Merlin
  • G. L. Garagnani
Article

Abstract

Micro-alloyed steels are known to exhibit superior mechanical properties through controlled rolling and specific thermo-mechanical treatments. Steel strength directly comes from a controlled precipitation process of carbides, nitrides and carbo-nitrides formed during the thermo-mechanical treatment, which are responsible for the fine-grained ferritic structure. In the present study, four different micro-alloyed, low-carbon steels have been studied: one baseline steel containing a small fraction of Al and N, and the other three with different fractions of Nb and V. Two thermo-mechanical treatments, which differed in the γ → α transformation temperature were evaluated. Micro-strengthening contributions of the carbo-nitrides were determined using the Ashby-Orowan approach on the basis of TEM characterization. It was found that for the all four steels the Ashby-Orowan approach was in quite good agreement with the bulk yield strength (σy), as determined by mechanical testing steel (accounting for 0.8σy). The pinning force of the particles was also calculated and compared to the recrystallization driving force. The steel containing Nb + V exhibited the highest pinning force, but the low fraction of the alloying elements, made this contribution only a fraction of ~1/3 with respect to the recrystallization driving force.

Keywords

Ferrite Austenite Convergent Beam Electron Diffraction Ferrite Recrystallization Plain Steel 

Notes

Acknowledgements

The research has been partially funded by a MiUR–PRIN 2005 project. The authors wish to thank Ms. Silvia Saetti, Department of Engineering, University of Ferrara, and Mr. Alberto Fabrizi for their help in TEM specimen preparation.

References

  1. 1.
    Bakkaloglu A (2002) Mater Lett 56:200CrossRefGoogle Scholar
  2. 2.
    Santos DB, Bruzszek RK, Rodrigues PCM, Pereloma EV (2003) Mater Sci Eng A 346:189. doi: https://doi.org/10.1016/S0921-5093(02)00519-1 CrossRefGoogle Scholar
  3. 3.
    Kwon O, DeArdo AJ (1991) Acta Metall Mater 39:529. doi: https://doi.org/10.1016/0956-7151(91)90121-G CrossRefGoogle Scholar
  4. 4.
    Cruz MGH, Viecelli A (2008) Mater Des 29(2):539. doi: https://doi.org/10.1016/j.matdes.2006.12.010 CrossRefGoogle Scholar
  5. 5.
    Yannacoppoulos S, Chaturvedi MC (1988) Can Metall Quart 27:163CrossRefGoogle Scholar
  6. 6.
    Zajac S, Siwecki T, Hutchinson B (1991) Metall Mater Trans 22A:2681CrossRefGoogle Scholar
  7. 7.
    Hodgson PD, Hickson MR, Gibbs RK (1999) Scr Mater 40:1179. doi: https://doi.org/10.1016/S1359-6462(98)00411-4 CrossRefGoogle Scholar
  8. 8.
    Palmiere EJ, Garcia CI, DeArdo AJ (1994) Metall Mater Trans 25A:277CrossRefGoogle Scholar
  9. 9.
    Pereloma EV, Timokhina IB, Russell KF, Miller MK (2006) Scr Mater 54:471. doi: https://doi.org/10.1016/j.scriptamat.2005.10.008 CrossRefGoogle Scholar
  10. 10.
    Murayama M, Hono K (2001) Scr Mater 44:701. doi: https://doi.org/10.1016/S1359-6462(00)00651-5 CrossRefGoogle Scholar
  11. 11.
    Hong SC, Lim SH, Hong HS, Lee KJ, Shin DH, Lee KS (2003) Mater Sci Eng A 355:241. doi: https://doi.org/10.1016/S0921-5093(03)00071-6 CrossRefGoogle Scholar
  12. 12.
    Priestner R (1998) Mater Sci Forum 284–286:95CrossRefGoogle Scholar
  13. 13.
    Maruyama M, Uemori R, Sugiyama M (1998) Mater Sci Eng A 250:2. doi: https://doi.org/10.1016/S0921-5093(98)00528-0 CrossRefGoogle Scholar
  14. 14.
    Takaki S, Kawasaki K, Kimura Y (2001) J Mater Process Technol 117:359. doi: https://doi.org/10.1016/S0924-0136(01)00797-X CrossRefGoogle Scholar
  15. 15.
    Jonas JJ, Wiess I (1979) Meat Sci 13:238CrossRefGoogle Scholar
  16. 16.
    Dutta B, Valdes A, Sellars CM (1992) Acta Metall Mater 40:653. doi: https://doi.org/10.1016/0956-7151(92)90006-Z CrossRefGoogle Scholar
  17. 17.
    LeBon A, Rofes-Vernis J, Rossard C (1975) Meat Sci 9:36CrossRefGoogle Scholar
  18. 18.
    Rainforth WM, Black MP, Higginson RL, Palmiere EJ, Sellars CM, Prabst I et al (2002) Acta Mater 50:735. doi: https://doi.org/10.1016/S1359-6454(01)00389-5 CrossRefGoogle Scholar
  19. 19.
    Craven AJ, He K, Garvie LAJ, Baker TN (2000) Acta Mater 48:3869. doi: https://doi.org/10.1016/S1359-6454(00)00193-2 CrossRefGoogle Scholar
  20. 20.
    Stasko R, Adrian H, Adrian A (2006) Mater Charact 56:340. doi: https://doi.org/10.1016/j.matchar.2005.09.012 CrossRefGoogle Scholar
  21. 21.
    Nes E, Ryum N, Hunderi O (1985) Acta Metall 33:11. doi: https://doi.org/10.1016/0001-6160(85)90214-7 CrossRefGoogle Scholar
  22. 22.
    Pandit A, Murugaiyan A, Saha Podder A, Haldar A, Bhattacharjee D, Chandra S et al (2005) Scr Mater 53:1309. doi: https://doi.org/10.1016/j.scriptamat.2005.07.003 CrossRefGoogle Scholar
  23. 23.
    Wilson JA, Craven AJ (2003) Ultramicroscopy 94:97. doi: https://doi.org/10.1016/S0304-3991(02)00265-6 CrossRefGoogle Scholar
  24. 24.
    MacKenzie M, Craven AJ, Collins CL (2006) Scr Mater 54:1. doi: https://doi.org/10.1016/j.scriptamat.2005.09.018 CrossRefGoogle Scholar
  25. 25.
    Hansen SS, Vander Sande JD, Cohen M (1980) Metall Trans 11A:387CrossRefGoogle Scholar
  26. 26.
    Kuziak R, Bold T, Cheng Y-W (1995) J Mater Process Technol 53:255. doi: https://doi.org/10.1016/0924-0136(95)01983-L CrossRefGoogle Scholar
  27. 27.
    Gladman T (1997) The physical metallurgy of microalloyed steels. The Institute of Materials, London, pp 81–185, 263–355Google Scholar
  28. 28.
    Martin JW (1980) Micromechanisms in particle-hardened alloys. Cambridge solid state science series. Cambridge University Press, Cambridge, UKGoogle Scholar
  29. 29.
    Riva R, Mapelli C, Venturini R (2007) ISIJ Int 47:1204. doi: https://doi.org/10.2355/isijinternational.47.1204 CrossRefGoogle Scholar
  30. 30.
    Cuddy LJ (1982) In: DeArdo AJ, Ratz GH, Wray PJ (eds) Thermomechanical processing of microalloyed austenite. TMS-AIME, Warrendale, PA, p 129 Google Scholar
  31. 31.
    Azevedo G, Barbosa R, Pereloma EV, Santos D (2005) Mater Sci Eng A 402:98. doi: https://doi.org/10.1016/j.msea.2005.04.026 CrossRefGoogle Scholar
  32. 32.
    Dutta B, Sellars CM (1987) Mater Sci Technol 3:197CrossRefGoogle Scholar
  33. 33.
    Houghton DC (1993) Acta Metall Mater 41:2993. doi: https://doi.org/10.1016/0956-7151(93)90114-8 CrossRefGoogle Scholar
  34. 34.
    Hong SG, Kang KB, Park CG (2002) Scr Mater 46:163. doi: https://doi.org/10.1016/S1359-6462(01)01214-3 CrossRefGoogle Scholar
  35. 35.
    Chen G, Yang W, Guo S, Sun Z (2007) J Univ Sci Technol Beijing 14:36CrossRefGoogle Scholar
  36. 36.
    Cao J-C, Liu Q-Y, Yong Q-L, Sun X-J (2007) J Iron Steel Res Int 14:51CrossRefGoogle Scholar
  37. 37.
    Burke MG, Cuddy LJ, Piller J, Miller MK (1988) Mater Sci Technol 4:113CrossRefGoogle Scholar
  38. 38.
    Kliber J, Schindler I (1996) J Mater Process Technol 60:597. doi: https://doi.org/10.1016/0924-0136(96)02392-8 CrossRefGoogle Scholar
  39. 39.
    Cordea JN, Hook RE (1970) Metall Trans 1:111Google Scholar
  40. 40.
    Luton MJ, Dorvel R, Petkovic RA (1980) Metall Trans 11A:411CrossRefGoogle Scholar
  41. 41.
    Rodrigues PCM, Pereloma EV, Santos DB (2000) Mater Sci Eng A 283:136. doi: https://doi.org/10.1016/S0921-5093(99)00795-9 CrossRefGoogle Scholar
  42. 42.
    Singh AP, Prasad A, Prakash K, Sengupta D, Murty GMD (1999) Mater Sci Technol 15:121CrossRefGoogle Scholar
  43. 43.
    Lee KJ, Lee JK (1999) Scr Mater 40:831. doi: https://doi.org/10.1016/S1359-6462(99)00025-1 CrossRefGoogle Scholar
  44. 44.
    Maruyama N, Smith GDW (2002) Mater Sci Eng A327:34CrossRefGoogle Scholar
  45. 45.
    DeArdo AJ (1998) Mater Sci Forum 284–286:15CrossRefGoogle Scholar
  46. 46.
    Hong SG, Jun HJ, Kang KB, Park CG (2003) Scr Mater 48:1201. doi: https://doi.org/10.1016/S1359-6462(02)00567-5 CrossRefGoogle Scholar
  47. 47.
    Mishra(Pathak) SK, Das S, Ranganathan S (2002) Mater Sci Eng A323:285. doi: https://doi.org/10.1016/S0921-5093(01)01382-X CrossRefGoogle Scholar
  48. 48.
    Pereloma EV, Timokhina IB, Miller MK, Hodgson PD (2007) Acta Mater 55:2587. doi: https://doi.org/10.1016/j.actamat.2006.12.001 CrossRefGoogle Scholar
  49. 49.
    Hofer F, Warbichler P, Grogger W (1995) Ultramicroscopy 59:15. doi: https://doi.org/10.1016/0304-3991(95)00015-S CrossRefGoogle Scholar
  50. 50.
    Warbichler P, Hofer F, Hofer P, Letofsky E (1998) Micron 29:63. doi: https://doi.org/10.1016/S0968-4328(97)00054-1 CrossRefGoogle Scholar
  51. 51.
    Petch NJ (1986) Acta Metall 34:1387. doi: https://doi.org/10.1016/0001-6160(86)90026-X CrossRefGoogle Scholar
  52. 52.
    Crooks MJ, Garratt-Reed AJ, Vander Sande JD, Owen WS (1981) Metall Trans 12A:1999CrossRefGoogle Scholar
  53. 53.
    Pereloma EV, Boyd JD (1996) Mater Sci Technol 12:1043Google Scholar
  54. 54.
    Hulka K, Hillenbrand HG, Heisterkamp F, Niederhoff KA (1995) Microalloying 95. In: Proceedings of the international conference on microalloying, Pittsburg, PA, p 235Google Scholar
  55. 55.
    DeArdo AJ (1984) In: Dunne DP, Chandra T (eds) High strength low alloy steels. Wollongong University Press, NSW, p 70Google Scholar
  56. 56.
  57. 57.
    Garbarz B, Pickering FB (1988) Mater Sci Technol 4:967CrossRefGoogle Scholar
  58. 58.
    Strid J, Easterling KE (1985) Acta Metall 33:2057. doi: https://doi.org/10.1016/0001-6160(85)90129-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M. Cabibbo
    • 1
    Email author
  • A. Fabrizi
    • 1
  • M. Merlin
    • 2
  • G. L. Garagnani
    • 2
  1. 1.Dipartimento di MeccanicaUniversità Politecnica delle MarcheVia Brecce BiancheItaly
  2. 2.Dipartimento di IngegneriaUniversità di FerraraFerraraItaly

Personalised recommendations