Journal of Materials Science

, Volume 43, Issue 21, pp 6890–6901 | Cite as

Magneto-microstructural coupling during stress-induced phase transformation in Co49Ni21Ga30 ferromagnetic shape memory alloy single crystals

  • D. NiklaschEmail author
  • J. Dadda
  • H. J. Maier
  • I. Karaman


The present study reports on direct magneto-microstructural observations made during the stress-induced martensitic transformation in Co49Ni21Ga30 alloy single crystals with optical, scanning electron, and magnetic force microscopy (MFM). The evolution of the microstructure and the associated magnetic domain morphology as a function of applied strain were investigated in the as-grown condition and after thermo-mechanical training. The results demonstrated that the stress-induced martensite (SIM) evolves quite differently in the two conditions and depending on the martensite formation mechanisms, the magnetic domain configuration was dissimilar. In the as-grown crystals two twin-related martensite variants were formed and the growth of these twin variants resulted in large strain. After thermo-mechanical training a morphology similar to a self-accommodating martensite structure was present at the initial stages of the transformation and thereafter martensite reorientation (MR) was the main transformation mechanism. The magnetic domains were found to be superimposed on the nano-scaled martensite twins in the as-grown condition, whereas training brought about the formation of domains on the order of a few microns without showing the one-to-one correspondence between domains and the twin structure. After the thermo-mechanical training detwinning at high-strain levels led to the formation of stripe-like domain structures. The ramifications of the results with respect to the magneto-microstructural coupling that may cause the magnetic shape memory effect (MSME) in Co–Ni–Ga alloys under constant external stress is addressed.


Austenite Martensite Magnetic Domain Magnetic Force Microscopy Magnetic Domain Structure 



The present study was supported by Deutsche Forschungsgemeinschaft and US Army Research Office, Contract No W911NF-06-1-0319. The authors thank Prof. Y. I. Chumlyakov for providing the single crystals.


  1. 1.
    Ullakko K, Huang JK, Kanter C, O’Handley RC, Kokorin VV (1996) Appl Phys Lett 69:1966. doi: CrossRefGoogle Scholar
  2. 2.
    Heczko O, Sozinov A, Ullakko K (2000) IEEE Trans Magn 36:3266. doi: CrossRefGoogle Scholar
  3. 3.
    Sozinov A, Likhachev AA, Lanska N, Ullakko K (2002) Appl Phys Lett 80:1746. doi: CrossRefGoogle Scholar
  4. 4.
    James RD, Wuttig M (1998) Philos Mag A 77:1273. doi: CrossRefGoogle Scholar
  5. 5.
    Fukuda T, Sakamoto T, Kakeshita T, Takeuchi T, Kishio K (2004) Mater Trans 45:188. doi: CrossRefGoogle Scholar
  6. 6.
    O’Handley RC (2000) Modern magnetic materials: principles and applications. Wiley-Interscience Publication, New York, p 260Google Scholar
  7. 7.
    O’Handley RC (1998) J Appl Phys 83:3263. doi: CrossRefGoogle Scholar
  8. 8.
    Likhachev AA, Sozinov A, Ullakko K (2004) Mater Sci Eng A 378:513. doi: CrossRefGoogle Scholar
  9. 9.
    Heczko O (2005) J Magn Magn Mater 290–291:787. doi: CrossRefGoogle Scholar
  10. 10.
    Pan Q, James RD (2000) J Appl Phys 87:4702. doi: CrossRefGoogle Scholar
  11. 11.
    Ge Y, Söderberg O, Hannula SP, Lindroos VK (2005) Smart Mater Struct 14:S211. doi: CrossRefGoogle Scholar
  12. 12.
    Sullivan MR, Ateya D, Pirotta SJ, Shah AA, Wu GH, Chopra HD (2004) J Appl Phys 95:6951. doi: CrossRefGoogle Scholar
  13. 13.
    Murakami Y, Shindo D, Oikawa K, Kainuma R, Ishida K (2002) Acta Mater 50:2173. doi: CrossRefGoogle Scholar
  14. 14.
    Murakami Y, Shindo D, Oikawa K, Kainuma R, Ishida K (2004) Appl Phys Lett 85:6170. doi: CrossRefGoogle Scholar
  15. 15.
    Murakami Y, Shindo D, Sakamoto T, Fukuda T, Kakeshita T (2006) Acta Mater 54:1233. doi: CrossRefGoogle Scholar
  16. 16.
    Karaman I, Karaca HE, Basaran B, Lagoudas DC, Chumlyakov YI, Maier HJ (2006) Scr Mater 55:403. doi: CrossRefGoogle Scholar
  17. 17.
    Karaca HE, Karaman I, Basaran B, Lagoudas DC, Chumlyakov YI, Maier HJ (2006) Scr Mater 55:803. doi: CrossRefGoogle Scholar
  18. 18.
    Karaca HE, Karaman I, Basaran B, Lagoudas DC, Chumlyakov YI, Maier HJ (2007) Acta Mater 55:4253. doi: CrossRefGoogle Scholar
  19. 19.
    Wuttig M, Li J, Craciunescu C (2001) Scr Mater 44:2393. doi: CrossRefGoogle Scholar
  20. 20.
    Oikawa K, Ota T, Gejima F, Ohmori T, Kainuma R, Ishida K (2001) Mater Trans 42:2472. doi: CrossRefGoogle Scholar
  21. 21.
    Chernenko VA, Pons J, Cesari E, Perekos AE (2004) Mater Sci Eng A 378:357. doi: CrossRefGoogle Scholar
  22. 22.
    Dadda J, Maier HJ, Karaman I, Karaca HE, Chumlyakov YI (2006) Scr Mater 55:663. doi: CrossRefGoogle Scholar
  23. 23.
    Dadda J, Canadinc D, Maier HJ, Karaman I, Karaca HE, Chumlyakov YI (2007) Philos Mag 87:2313. doi: CrossRefGoogle Scholar
  24. 24.
    Dadda J, Maier HJ, Niklasch D, Karaman I, Karaca HE, Chumlyakov YI (2008) Metall Mater Trans A 39:2026. doi: CrossRefGoogle Scholar
  25. 25.
    De Graef M, Kishi Y, Zhu Y, Wuttig M (2003) J Phys IV 112:993. doi: Google Scholar
  26. 26.
    Saxena A, Castán T, Porta M, Kishi Y, Lograsso TA, Viehland D, Wuttig M, De Graef M (2004) Phys Rev Lett 92:197203-1-4CrossRefGoogle Scholar
  27. 27.
    Chopra HD, Sullivan MR (2005) Rev Sci Instrum 76:013910-1-6CrossRefGoogle Scholar
  28. 28.
    Sullivan MR, Pirotta SJ, Chernenko VA, Wu GH, Balasubramanium G, Hua SZ et al (2005) Int J Appl Electromagn Mech 22:11CrossRefGoogle Scholar
  29. 29.
    Chikazumi S (1964) Physics of magnetism. Wiley, Inc., New York, p 117Google Scholar
  30. 30.
    Oikawa K, Ota T, Imano Y, Omori T, Kainuma R, Ishida K et al (2006) Equilib Diffus 27:75. doi: CrossRefGoogle Scholar
  31. 31.
    Cong DY, Zhang YD, Wang YD, Humbert M, Zhao X, Watanabe T et al (2007) Acta Mater 55:4731. doi: CrossRefGoogle Scholar
  32. 32.
    Sullivan MR, Chopra HD (2004) Phys Rev B 70:094427-1-8Google Scholar
  33. 33.
    Sullivan MR, Shah AA, Chopra HD (2004) Phys Rev B 70:094428-1-8Google Scholar
  34. 34.
    Liu CM, Chen LW (2005) J Phys D: Appl Phys 38:1182CrossRefGoogle Scholar
  35. 35.
    Su F, Wei J, Liu Y (2005) Nanotechnology 16:1681. doi: CrossRefGoogle Scholar
  36. 36.
    Gall K, Tyber J, Brice V, Frick CP, Maier HJ, Morgan N (2005) J Biomed Mater Res 75A:810. doi: CrossRefGoogle Scholar
  37. 37.
    Sehitoglu H, Hamilton R, Canadinc D, Zhang XY, Gall K, Karaman I et al (2003) Metall Mater Trans A 34:5. doi: CrossRefGoogle Scholar
  38. 38.
    Hubert A, Schäfer R (2000) Magnetic domains. Springer, Berlin, p 292, 422Google Scholar
  39. 39.
    Ge Y, Heczko O, Söderberg O, Hannula SP (2006) Scr Mater 54:2155. doi: CrossRefGoogle Scholar
  40. 40.
    Chernenko VA, Lvov VA, Besseghini S, Murakami Y (2006) Scr Mater 55:307. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • D. Niklasch
    • 1
    Email author
  • J. Dadda
    • 1
  • H. J. Maier
    • 1
  • I. Karaman
    • 2
  1. 1.Lehrstuhl für Werkstoffkunde (Materials Science)University of PaderbornPaderbornGermany
  2. 2.Department of Mechanical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations