Journal of Materials Science

, Volume 43, Issue 21, pp 6902–6911 | Cite as

An important factor for controlling the photoreactivity of titania: O-deficiency of anatase thin films

  • Hiroki Nagai
  • Moyu Hasegawa
  • Hiroki Hara
  • Chihiro Mochizuki
  • Ichiro Takano
  • Mitsunobu SatoEmail author


Oxygen deficient (O-deficient) anatase thin films with high photoreactivity under UV-light irradiation were fabricated by post-annealing partially nitrided anatase thin films, prepared by heat-treatment of precursor films involving a Ti complex of EDTA on an FTO glass substrate at 500 °C for 30 min in an Ar gas flow, in air at 500 °C for 5–30 min. The anatase structure of the transparent thin films was characterized by using XRD and Raman spectra. The O/Ti peak area ratio determined by using XPS of the anatase film having the highest photoreactivity, which was evaluated according to the decoloration rate of methylene blue in an aqueous solution, was 1.5. The photoreactivity of the film was 2.1 times higher than that prepared by using the sol–gel method, with an O/Ti ratio of 1.7. The thin film with the highest photoreactivity indicated the smallest refractive index, 1.99.


Methylene Blue Precursor Film Transparent Thin Film Anatase Film Anatase Lattice 



This study was supported by the “High-Tech Research Center” Project for Private Universities: Matching fund subsidy from Ministry of Education, Culture, Sports, Science and Technology (MEXT) Japan, 2006–2010.


  1. 1.
    Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobiol Chem 1:1. doi: CrossRefGoogle Scholar
  2. 2.
    Meshmiri M, Mohseni M, Troczynski T (2004) Appl Catal B 53:209. doi: CrossRefGoogle Scholar
  3. 3.
    Yu JC, Yu J, Zhao J (2002) Appl Catal B 36:31. doi: CrossRefGoogle Scholar
  4. 4.
    Nagai H, Mochizuki C, Hara H, Takano I, Sato M (2008) Sol Energy Mater Sol Cell 92:1136. doi: CrossRefGoogle Scholar
  5. 5.
    Anpo M, Kishiguchi S, Ichihashi Y, Takeuchi M, Yamashita H, Ikeue K et al (2001) Che M Res Chem Intermed 27:459. doi: CrossRefGoogle Scholar
  6. 6.
    Anpo M (2004) Bull Chem Soc Jpn 77:1427. doi: CrossRefGoogle Scholar
  7. 7.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269. doi: CrossRefGoogle Scholar
  8. 8.
    Irie H, Watanabe Y, Hashimoto K (2003) Chem Lett 32:772. doi: CrossRefGoogle Scholar
  9. 9.
    Sakthivel S, Kisch H (2003) Angew Chem Int Ed 42:4908. doi: CrossRefGoogle Scholar
  10. 10.
    Ohno T, Tsubota T, Toyofuku M, Inaba R (2004) Catal Lett 98:255. doi: CrossRefGoogle Scholar
  11. 11.
    Ohno T, Mitsui T, Matsumura M (2003) Chem Lett 32:364. doi: CrossRefGoogle Scholar
  12. 12.
    Umebayashi T, Yamaki T, Itoh H, Asai K (2002) Appl Phys Lett 81:454. doi: CrossRefGoogle Scholar
  13. 13.
    Umebayashi T, Yamaki T, Tanaka S, Asai K (2003) Chem Lett 32:330. doi: CrossRefGoogle Scholar
  14. 14.
    Sato M, Hara H, Nishide T, Kuritani H, Sawada Y (1996) J Mater Chem 6:1767. doi: CrossRefGoogle Scholar
  15. 15.
    Brinker CJ, Scherer GW (1990) Sol–gel science. Academic Press, CA, USAGoogle Scholar
  16. 16.
    Bruce DW, O’Hare D (1992) Inoganic materials. Wiley, ChichesterGoogle Scholar
  17. 17.
    Cullity BD (1978) Elements of X-ray diffraction. Addison-Wesley Publishing Company Inc., USAGoogle Scholar
  18. 18.
    Sherrer P (1918) Cottingernachr 2:98Google Scholar
  19. 19.
    Hall WH (1950) J Inst Met 75:1127Google Scholar
  20. 20.
    Tanemura S, Miao L, Jin P, Kaneko K, Terai A, Nabatova-Gabain N (2003) Appl Surf Sci 212–213:654. doi: CrossRefGoogle Scholar
  21. 21.
    Kwon CH, Shin H, Kim CH, Choi WS, Yoon KH (2004) Mater Chem Phys 86:78. doi: CrossRefGoogle Scholar
  22. 22.
    Ohno T, Tsubota T (2004) Chem Lett 33:750. doi: CrossRefGoogle Scholar
  23. 23.
    JCPDS Card 21-1272Google Scholar
  24. 24.
    JCPDS Card 21-1276Google Scholar
  25. 25.
    JCPDS Card 41-1445Google Scholar
  26. 26.
    Ohtsuka T, Guo J, Sato N (1986) J Electrochem Soc 133:2473. doi: CrossRefGoogle Scholar
  27. 27.
    Moses PR, Wier LM, Lennox JC, Finklea HO, Lenhard JR, Murray RW (1978) Anal Chem 50:576. doi: CrossRefGoogle Scholar
  28. 28.
    Saha NC, Tompkins HG (1992) J Appl Phys 72:3072. doi: CrossRefGoogle Scholar
  29. 29.
    Miao L, Jin P, Kaneko K, Terai A, Nabatova-Gabain N, Tanemura S (2003) Appl Surf Sci 212–213:255. doi: CrossRefGoogle Scholar
  30. 30.
    Wang Z, Helmerson U, Käll PO (2002) Thin Solid Films 405:50. doi: CrossRefGoogle Scholar
  31. 31.
    Nishide T, Sato M, Hara H (2000) J Mater Sci 35:465. doi: CrossRefGoogle Scholar
  32. 32.
    Yu JC, Yu J, Zhang L, Ho W (2002) J Photochem Photobiol A 148:263. doi: CrossRefGoogle Scholar
  33. 33.
    Kominami H, Kato J, Murakami S, Kera Y, Inoue M, Inui T et al (1999) J Mol Catal Chem 144:165. doi: CrossRefGoogle Scholar
  34. 34.
    Bandara J, Kuruppu SS, Pradeep UW (2006) Colloids Surf 276:197. doi: CrossRefGoogle Scholar
  35. 35.
    Xin B, Ren Z, Wang P, Liu J, Jing L, Fu H (2007) Appl Surf Sci 253:4390. doi: CrossRefGoogle Scholar
  36. 36.
    Fackler JP Jr, Kristine FJ, Mazany AM, Moyer TJ, Shepherd RE (1985) Inorg Chem 24:1857. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hiroki Nagai
    • 1
  • Moyu Hasegawa
    • 1
  • Hiroki Hara
    • 1
  • Chihiro Mochizuki
    • 1
  • Ichiro Takano
    • 2
  • Mitsunobu Sato
    • 1
    Email author
  1. 1.Coordination Engineering Laboratory, Faculty of EngineeringKogakuin UniversityHachioji CityJapan
  2. 2.Department of Electronic EngineeringFaculty of Engineering, Kogakuin UniversityHachioji CityJapan

Personalised recommendations