Advertisement

Journal of Materials Science

, Volume 43, Issue 21, pp 6840–6847 | Cite as

X-ray diffraction study on a nanostructured 18Ni maraging steel prepared by equal-channel angular pressing

  • M. R. Movaghar Garabagh
  • S. Hossein NedjadEmail author
  • M. Nili Ahmadabadi
Article

Abstract

Starting from a hierarchically substructured, heavily dislocated, and highly alloyed martensitic structure, an 18Ni maraging steel was deformed by four passes of equal-channel angular pressing at ambient temperature. X-ray diffraction peak profile analyses according to the modified Williamson–Hall and Warren–Averbach methods were used for determination of apparent grain size, dislocation density, and character of the prevailing dislocations, aided by supplemental transmission electron microscopy. A mean grain size of about 60 nm was determined, corresponding reasonably to the mean dislocation cell size illustrated by means of transmission electron microscopy. Furthermore, a dislocation density of 1.3 × 1016 m−2 along with an about 5:1 ratio of screw to edge type dislocations were identified. A dislocation arrangement parameter larger than unity was determined for the present deformed structure, representing a weak dipole character of the dislocation structure and weak screening action of the strain fields of multiple dislocations.

Keywords

Maraging Steel Lath Martensite Dislocation Cell Cauchy Function Dislocation Cell Size 

References

  1. 1.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103. doi: https://doi.org/10.1016/S0079-6425(99)00007-9 CrossRefGoogle Scholar
  2. 2.
    Langdon TG (2007) Mater Sci Eng A 462:3. doi: https://doi.org/10.1016/j.msea.2006.02.473 CrossRefGoogle Scholar
  3. 3.
    Zhu YT, Langdon TG (2005) Mater Sci Eng A 409:234. doi: https://doi.org/10.1016/j.msea.2005.05.111 CrossRefGoogle Scholar
  4. 4.
    Tsuji N, Ueji R, Minamino Y, Saito Y (2002) Scr Mater 46:305. doi: https://doi.org/10.1016/S1359-6462(01)01243-X CrossRefGoogle Scholar
  5. 5.
    Das SK, Thomas G (1970) Metall Trans 1:325. doi: https://doi.org/10.1007/BF02642804 CrossRefGoogle Scholar
  6. 6.
    Morito S, Huang X, Maki T, Hansen N (2006) Acta Mater 54:5323. doi: https://doi.org/10.1016/j.actamat.2006.07.009 CrossRefGoogle Scholar
  7. 7.
    Morito S, Nishikawa J, Maki T (2003) ISIJ Int 43:1475. doi: https://doi.org/10.2355/isijinternational.43.1475 CrossRefGoogle Scholar
  8. 8.
    Morito S, Iwamoto S, Maki T (2003) In: Takeuchi H (ed) Int. Forum for the properties and applications of IF steels. The Iron Steel Institute of Japan, TokyoGoogle Scholar
  9. 9.
    Ueji R, Tsuji N, Minamino Y, Koizumi Y (2002) Acta Mater 50:4177. doi: https://doi.org/10.1016/S1359-6454(02)00260-4 CrossRefGoogle Scholar
  10. 10.
    Tianfu J, Yuwei G, Guiying Q, Quan L, Tiansheng W, Wei W et al (2006) Mater Sci Eng A 432:216. doi: https://doi.org/10.1016/j.msea.2006.06.047 CrossRefGoogle Scholar
  11. 11.
    Hossein Nedjad S, Nili Ahmadabadi M, Furuhara T (2008) Mater Sci Eng A 485:544. doi: https://doi.org/10.1016/j.msea.2007.08.008 CrossRefGoogle Scholar
  12. 12.
    Iranpour Mobarake M, Nili Ahmadabadi M, Poorganji B, Fatehi A, Shirazi H, Furuhara T, Habibi Parsa M, Hossein Nedjad S (2008) Mater Sci Eng A 491:172. doi: https://doi.org/10.1016/j.msea.2008.02.034 CrossRefGoogle Scholar
  13. 13.
    Ungar T, Gubicza J, Hanak P, Alexandrov IV (2001) Mater Sci Eng A 319–321:274. doi: https://doi.org/10.1016/S0921-5093(01)01025-5 CrossRefGoogle Scholar
  14. 14.
    Hossein Nedjad S, Movaghar Gharabagh MR (2007) Int J Mater Res (accepted)Google Scholar
  15. 15.
    Warren BE (1969) X-ray diffraction. Addison Wesley, MassachusettsGoogle Scholar
  16. 16.
    Ribarik G, Ungar T, Gubicza J (2001) J Appl Cryst 34:669. doi: https://doi.org/10.1107/S0021889801011451 CrossRefGoogle Scholar
  17. 17.
    Ungar T, Gubicza J, Ribarik G, Borbely A (2001) J Appl Cryst 34:298. doi: https://doi.org/10.1107/S0021889801003715 CrossRefGoogle Scholar
  18. 18.
    Ungar T, Dragomir IC, Revesz A, Borbely A (1999) J Appl Cryst 32:992. doi: https://doi.org/10.1107/S0021889899009334 CrossRefGoogle Scholar
  19. 19.
    Wilkens M (1967) Acta Metall 15:1412. doi: https://doi.org/10.1016/0001-6160(67)90020-X CrossRefGoogle Scholar
  20. 20.
    Wilkens M (1969) Acta Metall 17:1155. doi: https://doi.org/10.1016/0001-6160(69)90092-3 CrossRefGoogle Scholar
  21. 21.
    Chaudari DK, Ravindran PA, Wert JJ (1972) J Appl Phys 43:778. doi: https://doi.org/10.1063/1.1661280 CrossRefGoogle Scholar
  22. 22.
    Ungar T, Ribarik G, Gubicza J, Hanak P (2002) Trans ASME 124:2Google Scholar
  23. 23.
    Kuhlmann-Wilsdorf D, Hansen N (1991) Scr Metall Mater 25:1557. doi: https://doi.org/10.1016/0956-716X(91)90451-6 CrossRefGoogle Scholar
  24. 24.
    Li BL, Godfrey A, Meng QC, Liu Q, Hansen N (2004) Acta Mater 52:1069. doi: https://doi.org/10.1016/j.actamat.2003.10.040 CrossRefGoogle Scholar
  25. 25.
    Fatay D, Bastarash E, Nyilas K, Dobatkin S, Gubicza J, Ungar T (2003) Z Metallkd 94:1CrossRefGoogle Scholar
  26. 26.
    Gubicza J, Balogh L, Hellmig RJ, Estrin Y, Ungar T (2005) Mater Sci Eng A 400–401:334. doi: https://doi.org/10.1016/j.msea.2005.03.042 CrossRefGoogle Scholar
  27. 27.
    Dragomir IC, Gheorghe M, Thadhani N, Snyder RL (2005) Mater Sci Eng A 402:158. doi: https://doi.org/10.1016/j.msea.2005.04.028 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M. R. Movaghar Garabagh
    • 1
  • S. Hossein Nedjad
    • 1
    Email author
  • M. Nili Ahmadabadi
    • 2
  1. 1.Faculty of Materials EngineeringSahand University of TechnologyTabrizIran
  2. 2.School of Metallurgy and Materials EngineeringUniversity of TehranTehranIran

Personalised recommendations