Journal of Materials Science

, Volume 43, Issue 21, pp 6933–6937 | Cite as

Effect of Gd-doping on thermoelectric properties of Ca3Co4O9+δ ceramics

  • H. Q. LiuEmail author
  • X. B. Zhao
  • Fu Liu
  • Y. Song
  • Q. Sun
  • T. J. Zhu
  • F. P. Wang


A series of Ca3−xGdxCo4O9+δ precursor powders were synthesized by the polyacrylamide gel method, and their ceramics were obtained by the Spark Plasma Sintering (SPS). There were lots of defects in the sheet-like grains from SEM and TEM observations. The electrical and the thermal transport properties were obviously affected by the material microstructure. The small polaron hopping conduction mechanism was determined above 600 K, and the hopping activation energy increased with the increase of doping contents. It was found that the Seebeck coefficient and the resistivity of doped samples were markly enhanced due to the impurity compensation effect, and their thermal conductivities were decreased due to the defects scattering. The maximum figure of merit of ZT = 0.24 at 973 K was obtained for Ca2.7Gd0.3Co4O9+δ.


Spark Plasma Sinter Thermoelectric Property Seebeck Coefficient Dope Sample Negative Temperature Coefficient 



The authors would like to thank the financial supports from National Basic Research Program of China (973 program) under Grant No. 2007CB607502, the National Natural Science Foundation of China (NSFC) of No. 50801054 and 50772026, and Natural Science Key Fund of Heilongjiang Province in China (grant No. ZJG0605-01).


  1. 1.
    Park K, Kim KK, Seong JK (2007) Mater Lett 61:4759. doi: CrossRefGoogle Scholar
  2. 2.
    Zhang LH, Tosh T, Norlyuki O et al (2007) Mater Trans 48:2088. doi: CrossRefGoogle Scholar
  3. 3.
    Park K, Ko KY, Seong JK et al (2007) J Eur Ceram Soc 27:3735. doi: CrossRefGoogle Scholar
  4. 4.
    Yasukawa M, Itoh S, Kono T (2005) J Alloy Compd 390:250. doi: CrossRefGoogle Scholar
  5. 5.
    Androulakis J, Hsu KF, Pcionek R (2006) Adv Mater 18:1170. doi: CrossRefGoogle Scholar
  6. 6.
    Terasaki I, Sasago Y, Uchinokura K (1997) Phys Rev B 56:R12685. doi: CrossRefGoogle Scholar
  7. 7.
    Masset AC, Michel C, Maignan A et al (2000) Phys Rev B 62:166. doi: CrossRefGoogle Scholar
  8. 8.
    Koshibae W, Tsutsui K, Maekawa S (2000) Phys Rev B 62:6869. doi: CrossRefGoogle Scholar
  9. 9.
    Shikano M, Funahashi R (2003) Appl Phys Lett 82:1851. doi: CrossRefGoogle Scholar
  10. 10.
    Creon N, Perez O, Hadermann J (2006) Chem Mater 18:5355. doi: CrossRefGoogle Scholar
  11. 11.
    Prevel M, Perez O, Noudem JG (2007) Solid State Sci 9:231. doi: CrossRefGoogle Scholar
  12. 12.
    Matsubara I, Funahashi R, Tomonari T (2001) J Appl Phys 90:462. doi: CrossRefGoogle Scholar
  13. 13.
    Asahi R, Sugiyama J, Tani T (2002) Phys Rev B 66:155103. doi: CrossRefGoogle Scholar
  14. 14.
    Wang DL, Chen LD, Wang Q et al (2004) J Alloy Compd 376:58. doi: CrossRefGoogle Scholar
  15. 15.
    Kobayashi T, Takizawa H, Endo T (1991) J Solid State Chem 92:116. doi: CrossRefGoogle Scholar
  16. 16.
    Wang Y, Nyrissa S, Cava RJ et al (2003) Nature 423:425. doi: CrossRefGoogle Scholar
  17. 17.
    Takeuchi T (2004) Phys Rev B 69:125410. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • H. Q. Liu
    • 1
    Email author
  • X. B. Zhao
    • 1
  • Fu Liu
    • 2
  • Y. Song
    • 2
  • Q. Sun
    • 2
  • T. J. Zhu
    • 1
  • F. P. Wang
    • 2
  1. 1.Department of Materials Science, State Key Laboratory of Silicon MaterialsZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.Department of Applied ChemistryHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations