Advertisement

Journal of Materials Science

, Volume 43, Issue 21, pp 6925–6932 | Cite as

Synthesis and microstructure of vertically aligned ZnO nanowires grown by high-pressure-assisted pulsed-laser deposition

  • L. C. Tien
  • S. J. Pearton
  • D. P. NortonEmail author
  • F. Ren
Article

Abstract

The microstructure and growth behavior for vertically aligned Zinc oxide (ZnO) nanowires, synthesized on a ZnO thin film template by pulsed-laser deposition (PLD), is reported. The nanowire growth proceeds without any metal catalyst for nucleation, although an epitaxial ZnO thin film template is necessary in order to achieve uniform alignment. Nanowire growth at argon or oxygen background pressures of 500-mTorr results in nanowire diameters as small as 50–90 nm, with diameters largely determined by growth pressure and temperature. Room temperature photoluminescence show both near-band-edge and deep-level emission. The deep-level emission is believed caused by oxygen vancancies formed during growth.

Keywords

Field Emission Scanning Electron Microscopy Image Background Pressure Nanowire Growth Ablation Plume Nanowire Diameter 

Notes

Acknowledgements

This work was supported by NASA Kennedy Space Center Grant NAG 10–316. The authors would also like to acknowledge the assistance of the staff member in the Major Analytical Instrumentation Center (MAIC) at the University of Florida.

References

  1. 1.
    Pearton SJ, Norton DP, Ip K, Heo YW, Steiner T (2003) Superlattices Microstruct 34:3. doi: https://doi.org/10.1016/S0749-6036(03)00093-4 CrossRefGoogle Scholar
  2. 2.
    Carcia PF, McLean RS, Reilly MH, Nunes G Jr (2003) Appl Phys Lett 82:1117. doi: https://doi.org/10.1063/1.1553997 CrossRefGoogle Scholar
  3. 3.
    Masuda S, Kitamura K, Okumura Y, Miyatake S, Tabata H, Kawai T (2003) J Appl Phys 93:1624. doi: https://doi.org/10.1063/1.1534627 CrossRefGoogle Scholar
  4. 4.
    Heo YW, Kwon YW, Li Y, Pearton SJ, Norton DP (2005) J Electron Mater 34:409. doi: https://doi.org/10.1007/s11664-005-0120-7 CrossRefGoogle Scholar
  5. 5.
    Fan Z, Wang D, Chang P-C, Tseng W-Y, Lu JG (2004) Appl Phys Lett 85:5923. doi: https://doi.org/10.1063/1.1836870 CrossRefGoogle Scholar
  6. 6.
    Wan Q, Li QH, Chen YJ, Wang TH, He XL, Li JP et al (2004) Appl Phys Lett 84:3654. doi: https://doi.org/10.1063/1.1738932 CrossRefGoogle Scholar
  7. 7.
    Li QH, Liang YX, Wan Q, Wang TH (2004) Appl Phys Lett 85:6389. doi: https://doi.org/10.1063/1.1840116 CrossRefGoogle Scholar
  8. 8.
    Wang HT, Kang BS, Ren F, Tien LC, Sadik PW, Norton DP et al (2005) Appl Phys Lett 86:243503. doi: https://doi.org/10.1063/1.1949707 CrossRefGoogle Scholar
  9. 9.
    Tien LC, Sadik PW, Norton DP, Voss LF, Pearton SJ, Wang HT et al (2005) Appl Phys Lett 87:222106. doi: https://doi.org/10.1063/1.2136070 CrossRefGoogle Scholar
  10. 10.
    Kang BS, Heo YW, Tien LC, Norton DP, Ren F, Gila BP et al (2005) Appl Phys A 80:1029. doi: https://doi.org/10.1007/s00339-004-3098-8 CrossRefGoogle Scholar
  11. 11.
    Wang HT, Kang BS, Ren F, Tien LC, Sadik PW, Norton DP et al (2005) Appl Phys A 81:1117. doi: https://doi.org/10.1007/s00339-005-3310-5 CrossRefGoogle Scholar
  12. 12.
    Liu LQ, Xiang B, Zhang XZ, Zhang Y, Yu DP (2006) Appl Phys Lett 88:063104. doi: https://doi.org/10.1063/1.2168510 CrossRefGoogle Scholar
  13. 13.
    Ronning C, Gao PX, Ding Y, Wang ZL, Schwen D (2004) Appl Phys Lett 84:783. doi: https://doi.org/10.1063/1.1645319 CrossRefGoogle Scholar
  14. 14.
    Fukumura T, Jin Z, Kawasaki M, Shono T, Hasegawa T, Koshihara S et al (2001) Appl Phys Lett 78:958. doi: https://doi.org/10.1063/1.1348323 CrossRefGoogle Scholar
  15. 15.
    Cui J, Zeng Q, Gibson UJ (2006) J Appl Phys 99:8Google Scholar
  16. 16.
    Pearton SJ, Norton DP, Heo YW, Tien LC, Ivill MP, Li Y et al (2006) J Electron Mater 35:862. doi: https://doi.org/10.1007/BF02692541 CrossRefGoogle Scholar
  17. 17.
    Heo YW, Tien LC, Norton DP, Pearton SJ, Kang BS, Ren F et al (2004) Appl Phys Lett 85:2107. doi: https://doi.org/10.1063/1.1791733 CrossRefGoogle Scholar
  18. 18.
    Polyakov AY, Smirnov NB, Kozhukhova EA, Vdovin VI, Ip K, Heo YW et al (2003) Appl Phys Lett 83:575. doi: https://doi.org/10.1063/1.1594830 CrossRefGoogle Scholar
  19. 19.
    Heo YW, Tien LC, Kwon Y, Norton DP, Pearton SJ, Kang BS et al (2004) Appl Phys Lett 85:2274. doi: https://doi.org/10.1063/1.1794351 CrossRefGoogle Scholar
  20. 20.
    Lim J-H, Kong C-K, Kim K-K, Park I-K, Hwang D-K, Park S-J (2006) Adv Math 18:2720. doi: https://doi.org/10.1002/adma.200502633 CrossRefGoogle Scholar
  21. 21.
    Wei ZP, Lu YM, Shen DZ, Zhang ZZ, Yao B, Li BH et al (2007) Appl Phys Lett 90:042113. doi: https://doi.org/10.1063/1.2435699 CrossRefGoogle Scholar
  22. 22.
    Jiao SJ, Zhang ZZ, Lu YM, Shen DZ, Yao B, Zhang JY et al (2006) Appl Phys Lett 88:031911. doi: https://doi.org/10.1063/1.2166686 CrossRefGoogle Scholar
  23. 23.
    Jeong M-C, Oh B-Y, Ham M-H, Myoung J-M (2006) Appl Phys Lett 88:202105. doi: https://doi.org/10.1063/1.2204655 CrossRefGoogle Scholar
  24. 24.
    Heo YW, Norton DP, Tien LC, Kwon Y, Kang BS, Ren F et al (2004) Mater Sci Eng Rep 47:1. doi: https://doi.org/10.1016/j.mser.2004.09.001 CrossRefGoogle Scholar
  25. 25.
    Huang MH, Wu Y, Feick H, Tran N, Weber E, Yang P (2001) Adv Math 13:113. doi:10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-HCrossRefGoogle Scholar
  26. 26.
    Heo YW, Varadarajan V, Kaufman M, Kim K, Norton DP, Fleming PH (2002) Appl Phys Lett 81:3046. doi: https://doi.org/10.1063/1.1512829 CrossRefGoogle Scholar
  27. 27.
    Greene LE, Law M, Tan DH, Montano M, Goldberger J, Somorjai G et al (2005) Nano Lett 5:1231. doi: https://doi.org/10.1021/nl050788p CrossRefGoogle Scholar
  28. 28.
    Guo M, Diao P, Cai S (2005) J Solid State Chem 178:1864. doi: https://doi.org/10.1016/j.jssc.2005.03.031 CrossRefGoogle Scholar
  29. 29.
    Ma T, Guo M, Zhang M, Zhang Y, Wang X (2007) Nanotechnology 18:035605. doi: https://doi.org/10.1088/0957-4484/18/3/035605 CrossRefGoogle Scholar
  30. 30.
    Okada T, Agung BH, Nakata Y (2004) Appl Phys A 79:1417CrossRefGoogle Scholar
  31. 31.
    Hartanto AB, Ning X, Nakata Y, Okada T (2004) Appl Phys A 78:299. doi: https://doi.org/10.1007/s00339-003-2286-2 CrossRefGoogle Scholar
  32. 32.
    Kawakami M, Hartanto AB, Nakata Y, Okada T (2003) Jpn J Appl Phys Part 2 Lett 42:L33CrossRefGoogle Scholar
  33. 33.
    Konenkamp R, Word RC, Schlegel C (2004) Appl Phys Lett 85:6004. doi: https://doi.org/10.1063/1.1836873 CrossRefGoogle Scholar
  34. 34.
    Fan Z, Dutta D, Chien C-J, Chen H-Y, Brown EC, Chang P-C et al (2006) Appl Phys Lett 89:213110. doi: https://doi.org/10.1063/1.2387868 CrossRefGoogle Scholar
  35. 35.
    Wang ZL, Song J (2006) Science 312:243Google Scholar
  36. 36.
    Wang L, Zhang X, Zhao S, Zhou G, Zhou Y, Qi J (2005) Appl Phys Lett 86:024108. doi: https://doi.org/10.1063/1.1851607 CrossRefGoogle Scholar
  37. 37.
    Wu J-J, Liu S-C (2002) Adv Math 14:215. doi:10.1002/1521-4095(20020205)14:3<215::AID-ADMA215>3.0.CO;2-JCrossRefGoogle Scholar
  38. 38.
    Zhang G, Nakamura A, Aoki T, Temmyo J, Matsui Y (2006) Appl Phys Lett 89:113112. doi: https://doi.org/10.1063/1.2207832 CrossRefGoogle Scholar
  39. 39.
    Yi G-C, Park WI, Kim DH, Jung SW (2002) Appl Phys Lett 80:4232. doi: https://doi.org/10.1063/1.1434313 CrossRefGoogle Scholar
  40. 40.
    Park JY, Yun YS, Hong YS, Oh H, Kim J-J, Kim SS (2005) Appl Phys Lett 87:23108Google Scholar
  41. 41.
    Lowndes DH, Geohegan DB, Puretzky AA, Norton DP, Rouleau CM (1996) Science 273:898. doi: https://doi.org/10.1126/science.273.5277.898 CrossRefGoogle Scholar
  42. 42.
    Vanheusden K, Warren WL, Seager CH, Tallant DR, Voigt JA, Gnade BE (1996) J Appl Phys 79:7983. doi: https://doi.org/10.1063/1.362349 CrossRefGoogle Scholar
  43. 43.
    Heo YW, Norton DP, Pearton SJ (2005) J Appl Phys 98:073502. doi: https://doi.org/10.1063/1.2064308 CrossRefGoogle Scholar
  44. 44.
    Liu ZW, Ong CK, Yu T, Shen ZX (2006) Appl Phys Lett 88:053110. doi: https://doi.org/10.1063/1.2168675 CrossRefGoogle Scholar
  45. 45.
    Heo YW, Tien LC, Norton DP, Kang BS, Ren F, Gila BP et al (2004) Appl Phys Lett 85:2002. doi: https://doi.org/10.1063/1.1792373 CrossRefGoogle Scholar
  46. 46.
    Costa PMFJ, Golberg D, Shen G, Mitome M, Bando Y (2008) J Mater Sci 43:1460. doi: https://doi.org/10.1007/s10853-007-2307-1 CrossRefGoogle Scholar
  47. 47.
    Chander R, Raychaudhuri AK (2006) J Mater Sci 41:3623. doi: https://doi.org/10.1007/s10853-006-6218-3 CrossRefGoogle Scholar
  48. 48.
    Liu ZW, Yeo SW, Ong CK (2007) J Mater Sci 42:6489. doi: https://doi.org/10.1007/s10853-007-1557-2 CrossRefGoogle Scholar
  49. 49.
    Heo YW, Kaufman M, Pruessner K, Siebein KN, Norton DP, Ren F (2005) Appl Phys A 80:263. doi: https://doi.org/10.1007/s00339-004-2667-1 CrossRefGoogle Scholar
  50. 50.
    Heo YW, Abernathy C, Pruessner K, Sigmund W, Norton DP, Overberg M et al (2004) J Appl Phys 96:3424. doi: https://doi.org/10.1063/1.1774257 CrossRefGoogle Scholar
  51. 51.
    Yang Z, Huang Y, Chen ST, Zhao YQ, Li HL, Hu ZA (2005) J Mater Sci 40:1121. doi: https://doi.org/10.1007/s10853-005-6927-z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • L. C. Tien
    • 1
  • S. J. Pearton
    • 2
  • D. P. Norton
    • 2
    Email author
  • F. Ren
    • 3
  1. 1.Department of Materials Science and EngineeringNational Dong Hwa UniversityHualienTaiwan
  2. 2.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA
  3. 3.Department of Chemical EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations