Advertisement

Journal of Materials Science

, Volume 43, Issue 19, pp 6571–6574 | Cite as

Dual behavior of gold nanoparticles, as generators and scavengers for free radicals

  • Petre IonitaEmail author
  • Florica Spafiu
  • Corneliu Ghica
Letter

Literature data available on the interaction of stable free radicals with gold nanoparticles (Au NPs) suggested the adsorption of stable-free radicals on the nanoparticles surface, and the possibility of exchange interaction between the unpaired electron from the free radicals and the conduction-band electrons of the metal [1, 2]. Au NPs, as well as gold salts, are able to catalyze different processes, like oxidation, C–C bond formation, additions, alkylations, etc. [3, 4]. Exchange reactions (the most convenient method to prepare functionalized nanoparticles) mechanism of the ligands involves also in the first step the formation of an organometallic reactive complex [5, 6, 7]. The mechanisms of such processes are still under consideration. Nonetheless, free radicals play a major role in the surface chemistry of metal nanoparticles.

Our previous work demonstrates that Au NPs may abstract a hydrogen or a halogen atom from different substrates, yielding the corresponding short-lived...

Keywords

Electron Paramagnetic Resonance Gold Nanoparticles Nitroxide Diphenylamine Iodobenzene 

Notes

Acknowledgement

This work was funded by CNCSIS PN2 ‘Idea’ Grant 158/1.10.2007.

Supplementary material

10853_2008_2987_MOESM1_ESM.pdf (147 kb)
(PDF 147 kb)

References

  1. 1.
    Zhang Z, Berg A, Levanon H, Fessenden RW, Meisel D (2003) J Am Chem Soc 125:7959CrossRefGoogle Scholar
  2. 2.
    Harada G, Sakurai H, Matsushita MM, Izuoka A, Sugawara T (2002) Chem Lett 1030Google Scholar
  3. 3.
    Campbell CT (2004) Science 306:234CrossRefGoogle Scholar
  4. 4.
    Tsunoyama H, Sakurai H, Ichikuni N, Negishi Y, Tsukuda T (2004) Langmuir 20:11293CrossRefGoogle Scholar
  5. 5.
    Wang W, Murray RW (2005) Langmuir 21:7015CrossRefGoogle Scholar
  6. 6.
    Guo R, Song Y, Wang G, Murray RW (2005) J Am Chem Soc 127:2572CrossRefGoogle Scholar
  7. 7.
    Woehrle GH, Brown LO, Hutchison JE (2005) J Am Chem Soc 127:2172CrossRefGoogle Scholar
  8. 8.
    Ionita P, Gilbert BC, Chechik V (2005) Angew Chem Int Ed 44:3720CrossRefGoogle Scholar
  9. 9.
    Ionita P, Conte M, Gilbert BC, Chechik V (2007) Org Biomol Chem 5:3504CrossRefGoogle Scholar
  10. 10.
    Mirkhalaf F, Paprotny J, Schiffrin DJ (2006) J Am Chem Soc 128:7400CrossRefGoogle Scholar
  11. 11.
    Ullmann F (1904) Annalen 322:38CrossRefGoogle Scholar
  12. 12.
    Weare WW, Reed SM, Warner MG, Hutchison JE (2000) J Am Chem Soc 122:12890CrossRefGoogle Scholar
  13. 13.
    Buettner GR (1987) Free Radical Biol Med 3:259CrossRefGoogle Scholar
  14. 14.
    Ghica C, Ionita P (2007) J Mater Sci 42:10058. doi: https://doi.org/10.1007/s10853-007-1980-4 CrossRefGoogle Scholar
  15. 15.
    Hutchison JE, Postlethwaite TA, Murray RW (1993) Langmuir 9:3277CrossRefGoogle Scholar
  16. 16.
    Aprile C, Boronat M, Ferrer B, Corma A, Garcia H (2006) J Am Chem Soc 128:8388CrossRefGoogle Scholar
  17. 17.
    McGilvray KL, Decan MR, Wang D, Scaiano JC (2006) J Am Chem Soc 128:15980CrossRefGoogle Scholar
  18. 18.
    Dasog M, Scott RWJ (2007) Langmuir 23:3381CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institute of Physical ChemistryBucharestRomania
  2. 2.National Institute for Materials PhysicsBucharest-MagureleRomania

Personalised recommendations