Advertisement

Journal of Materials Science

, Volume 43, Issue 19, pp 6473–6479 | Cite as

Preparation and phase development of yttria-doped ceria coated TZP powder

  • Darunee WattanasiriwechEmail author
  • Suthee Wattanasiriwech
Article

Abstract

This paper presents a simple technique for preparation of yttria-doped ceria (YDC) coated tetragonal zirconia polycrystal (3Y-TZP) powder and its phase development upon firing. The coating solution was prepared using yttrium nitrate hexahydrate and cerium nitrate hexahydrate as starting reagents. Thermochemical reactions of the coated powder were studied using TGA and FTIR while phase development upon firing was examined using XRD. Inward diffusion of the coating YDC into the TZP particles was monitored by observing the change of crystal structure and lattice parameter as a function of sintering temperature and time. At sintering temperature of 1300 °C for 1 h, crystal structure of the sample was still tetragonal (t-ZrO2). Increasing sintering time to 5 h at 1300 °C, diffusion of YDC into TZP particles occurred drastically and the structure was changed to cubic (c-ZrO2) as indicated by the disappearance of (002)/(200) peak splitting. Increasing sintering temperature to 1400 and 1500 °C, however, resulted in the co-existence of tetragonal and cubic phases as indicated by the appearance of triples around 72.5–74° 2θ and also the decrease of cubic lattice parameter. When the sintering temperature was further increased to 1600 °C, lattice parameter was only slightly changed, suggesting that inward diffusion of YDC reached saturation point around this temperature.

Keywords

Ceria CeO2 Sinter Temperature Sinter Condition Increase Sinter Temperature 

References

  1. 1.
    Mogensen M, Sammes NM, Tompsett GA (2000) Solid State Ion 129:63. doi: https://doi.org/10.1016/S0167-2738(99)00318-5 CrossRefGoogle Scholar
  2. 2.
    Kudo T, Obayashi HJ (1975) Electrochem Soc 122(1):142. doi: https://doi.org/10.1149/1.2134143 CrossRefGoogle Scholar
  3. 3.
    Hatchewell C, Sammes NM, Brown IWM (1999) Solid State Ion 126:201. doi: https://doi.org/10.1016/S0167-2738(99)00232-5 CrossRefGoogle Scholar
  4. 4.
    Pérez-Coll D, Nùñez P, Frade JR, Abrantes JCC (2003) Electrochim Acta 48:1551. doi: https://doi.org/10.1016/S0013-4686(03)00027-6 CrossRefGoogle Scholar
  5. 5.
    Balazs GB, Glass RS (1995) Solid State Ion 76:155. doi: https://doi.org/10.1016/0167-2738(94)00242-K CrossRefGoogle Scholar
  6. 6.
    Inaba H, Tagawa H (1996) Solid State Ion 83:1. doi: https://doi.org/10.1016/0167-2738(95)00229-4 CrossRefGoogle Scholar
  7. 7.
    Steele BCH (2000) Solid State Ion 129:95. doi: https://doi.org/10.1016/S0167-2738(99)00319-7 CrossRefGoogle Scholar
  8. 8.
    Steele BCH, Floyd JM (1971) Proc Br Ceram Soc 19:55Google Scholar
  9. 9.
    O-Bellon NM, Sammes J, Staniforth S (1998) J Powder Sour 75:116. doi: https://doi.org/10.1016/S0378-7753(98)00104-9 CrossRefGoogle Scholar
  10. 10.
    Zhang T, Zeng Z, Huang H, Hing P, Kilner J (2002) Mater Lett 57:124. doi: https://doi.org/10.1016/S0167-577X(02)00717-6 CrossRefGoogle Scholar
  11. 11.
    Zhou XD, Scarfino B, Anderson HU (2004) Solid State Ion 175:19. doi: https://doi.org/10.1016/j.ssi.2004.09.040 CrossRefGoogle Scholar
  12. 12.
    Tsoga A, Gupta A, Naoumidis A, Nikolopoulos P (2000) Acta Mater 48:4709. doi: https://doi.org/10.1016/S1359-6454(00)00261-5 CrossRefGoogle Scholar
  13. 13.
    Bowen CR, Tavernor AW, Luo J, Stevens R (1999) J Eur Ceram Soc 19:149. doi: https://doi.org/10.1016/S0955-2219(98)00198-8 CrossRefGoogle Scholar
  14. 14.
    Huang SG, Li L, Van der Biest O, Vleugels J (2007) J Eur Ceram Soc 27:689–693. doi: https://doi.org/10.1016/j.jeurceramsoc.2006.04.040 CrossRefGoogle Scholar
  15. 15.
    Yuan ZX, Vleugels J, Van Der Biest O (2000) Mater Lett 46(5):249–254. doi: https://doi.org/10.1016/S0167-577X(00)00180-4 CrossRefGoogle Scholar
  16. 16.
    Gupta TK, Lange FF, Bechtold JH (1978) J Mater Sci 13:1464. doi: https://doi.org/10.1007/BF00553200 CrossRefGoogle Scholar
  17. 17.
    Amin KE, Nag D (1995) Am Ceram Soc Bull 74(5):80Google Scholar
  18. 18.
    Lee SW, Hsu SM, Shen MC (1993) J Am Ceram Soc 76(8):1937. doi: https://doi.org/10.1111/j.1151-2916.1993.tb08315.x CrossRefGoogle Scholar
  19. 19.
    Dauskardt RH, Yu W, Ritchie RO (1987) J Am Ceram Soc 70(10):C-248. doi: https://doi.org/10.1111/j.1151-2916.1987.tb04889.x CrossRefGoogle Scholar
  20. 20.
    Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley Publishing Company, Inc, pp 327–330Google Scholar
  21. 21.
    Howard CJ, Hill RJ, Reichert BE (1995) Appl Crystallogr 28:206. ICSD collection code 062994; zirconium yttrium oxide ((Zr0.935Y0.065)O1.968)Google Scholar
  22. 22.
    Yashima M, Sasaki S, Sakihana M, Yamaguchi Y, Arashi H, Yoshimura M (1994) Acta Crystallogr Sec B. Struct Sci 50:663. ICSD collection code 075316; zirconium yttrium oxide (Zr0.8Y0.2 O1.9)CrossRefGoogle Scholar
  23. 23.
    Morinaga M, Cohen JB (1979) Acta Crystallogr Sec A 35:745, 975. ICSD collection code 060605; zirconium yttrium oxide ((Zr0.786Y0.214)O1.7)Google Scholar
  24. 24.
    Ingel RP, Lewis D (1986) J Am Ceram Soc 69(4):325. doi: https://doi.org/10.1111/j.1151-2916.1986.tb04741.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Darunee Wattanasiriwech
    • 1
    Email author
  • Suthee Wattanasiriwech
    • 1
  1. 1.School of ScienceMah Fah Luang UniversityChiang RaiThailand

Personalised recommendations