Journal of Materials Science

, Volume 43, Issue 19, pp 6567–6570 | Cite as

Activation enthalpies for oxygen ion motion in cubic yttria-stabilized zirconia

  • R. J. DarbyEmail author
  • R. V. Kumar


The high oxygen ion conductivity of the yttria-stabilized zirconia (YSZ) system is well known. The conductivity at 1000 °C increases with YO1.5 addition to around 15–18 mol.% YO1.5, when the dopant content is just sufficient to fully stabilize the cubic fluorite phase. Further yttria additions result in a decrease in the conductivity [1, 2]. There are several contributory factors suggested to explain the conductivity decrease: formation of defect clusters reducing oxygen vacancy mobility [3, 4, 5], hindrance of oxygen ion motion due to the increasing presence of ‘large’ yttrium ions [6, 7, 8], and the increasing presence of a grain boundary phase [9]. Support for the influence of defect clusters is the observation that the activation enthalpy for oxygen ion conduction decreases at high temperatures (decreasing by ~0.2 eV above ~650 °C for 15 mol.% YO1.5) [4, 10, 11]. This has been correlated with the breaking-up of short-range order [11].

Although there is a wide...


Enthalpy Oxygen Vacancy Activation Enthalpy Defect Cluster Yttria Content 



R.J.D. and R.V·K. would like to thank Ian Farnan for helpful discussions. R.J.D. acknowledges funding from UK Engineering and Physical Sciences Research Council.


  1. 1.
    Badwal SPS (1992) Solid State Ionics 52:23. doi: CrossRefGoogle Scholar
  2. 2.
    Hattori M, Takeda Y, Sakaki Y, Nakanishi A, Ohara S, Mukai K et al (2004) J Power Sources 126:23. doi: CrossRefGoogle Scholar
  3. 3.
    Kilner JA, Steele BCH (1981) In: Sørensen OT (ed) Mass transport in anion-deficient fluorite oxides, 1st edn. Academic Press, New YorkGoogle Scholar
  4. 4.
    Badwal SPS (1984) J Mater Sci 19:1767. doi: CrossRefGoogle Scholar
  5. 5.
    Ioffe AI, Rutman DS, Karpachov SV (1978) Electrochim Acta 23:141. doi: CrossRefGoogle Scholar
  6. 6.
    Pornprasertsuk R, Ramanarayanan P, Musgrave CB, Prinz FB (2005) J Appl Phys 98:103513. doi: CrossRefGoogle Scholar
  7. 7.
    Meyer M, Nicoloso N, Jaenisch V (1997) Phys Rev B 56:5961. doi: CrossRefGoogle Scholar
  8. 8.
    Shimojo F, Okazaki H (1992) J Phys Soc Jpn 61:4106. doi: CrossRefGoogle Scholar
  9. 9.
    Yamamura H, Utsunomiya N, Mori T, Atake T (1998) Solid State Ionics 107:185. doi: CrossRefGoogle Scholar
  10. 10.
    Filal M, Petot C, Mokchah M, Chateau C, Carpentier JL (1995) Solid State Ionics 80:27. doi: CrossRefGoogle Scholar
  11. 11.
    Gibson IR, Irvine JTS (1996) J Mater Chem 6:895. doi: CrossRefGoogle Scholar
  12. 12.
    Strickler DW, Carlson WG (1964) J Am Ceram Soc 47:122. doi: CrossRefGoogle Scholar
  13. 13.
    Irvine JTS, Feighery AJ, Fagg DP, Garcia-Martin S (2000) Solid State Ionics 136:879. doi: CrossRefGoogle Scholar
  14. 14.
    Dixon JM, LaGrange LD, Merten U, Miller CF, Porter JT II (1963) J Electrochem Soc 110:276. doi: CrossRefGoogle Scholar
  15. 15.
    Irvine J, Gibson I, Fagg D (1995) Ionics 1:279. doi: CrossRefGoogle Scholar
  16. 16.
    Weller M, Herzog R, Kilo M, Borchardt G, Weber S, Scherrer S (2004) Solid State Ionics 175:409. doi: CrossRefGoogle Scholar
  17. 17.
    Goodenough JB (2003) Annu Rev Mater Res 33:91. doi: CrossRefGoogle Scholar
  18. 18.
    Lee TA, Navrotsky A, Molodetsky I (2003) J Mater Res 18:908. doi: CrossRefGoogle Scholar
  19. 19.
    Navrotsky A, Benoist L, Lefebvre H (2005) J Am Ceram Soc 88:2942Google Scholar
  20. 20.
    Shannon RD (1976) Acta Crystallogr A 32:751. doi: CrossRefGoogle Scholar
  21. 21.
    Martin M (2006) J Electroceram 17:765. doi: CrossRefGoogle Scholar
  22. 22.
    Almond DP, West AR (1987) Solid State Ionics 23:27. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK

Personalised recommendations