Journal of Materials Science

, Volume 43, Issue 19, pp 6480–6485 | Cite as

Gadolinium doping of vanadate-tellurate glasses and glass ceramics

  • Simona RadaEmail author
  • Eugen Culea
  • Monica Culea


In order to further elucidate the local structure of ternary xGd2O3(100 − x)[0.7TeO2 · 0.3V2O5] glasses with x = 0, 5, 10, 15, 20 mol%, FTIR spectroscopy, XRD diffraction and density measurement were performed. FTIR and density data show that by increasing the gadolinium ions content of the samples the excess of oxygen may be accommodated by the inter-conversion of some [VO4] into [VO5] structural units and of [TeO3] into [TeO4] units. The composition of the heat-treated glasses was found to consist mainly of the Te2V2O9 crystalline phase. Varying x between 15 and 20 mol% Gd2O3 produces structural modification having as result an increase of the glass network polymerization degree. Accordingly, the gadolinium ions play a particular role related to the improvement of the homogeneity of the glasses and in accommodating the glass network with the excess of oxygen.


V2O5 Glass Matrix TeO2 Gd2O3 Glass Ceramic 


  1. 1.
    Gaman VI, Peznikov VA, Fedyainova NI, Vyssh UZV (1972) Zaved Fiz 2:57Google Scholar
  2. 2.
    Sidkey MA, El Mallawany R, Nakhla RI, Abd El-Moneim A (1997) J Non-Cryst Solids 215:75CrossRefGoogle Scholar
  3. 3.
    Chowdari BVR, Tan KL, Ling F (2000) J Mater Sci 35:2015. doi: CrossRefGoogle Scholar
  4. 4.
    Rolli R, Gatterer K, Wachtler M, Bettinelli M, Speghini A, Ajo D (2001) Spectrochim Acta A 57:2009. doi: CrossRefGoogle Scholar
  5. 5.
    Kim SH, Yoko T (1995) J Am Ceram Soc 78:1061. doi: CrossRefGoogle Scholar
  6. 6.
    Lindquist O (1968) Acta Chem Scand 22:87Google Scholar
  7. 7.
    Galy J, Lindquist O (1979) J Solid State Chem 27:279. doi: CrossRefGoogle Scholar
  8. 8.
    Dimitriev Y, Dimitriev V (1978) Mater Res Bull 13:1071. doi: CrossRefGoogle Scholar
  9. 9.
    Ahmed MM, Hogarth CA (1983) J Mater Sci Lett 2(6):254. doi: CrossRefGoogle Scholar
  10. 10.
    Ghosh A, Chaudhuri BK (1987) J Mater Sci 22:2369. doi: CrossRefGoogle Scholar
  11. 11.
    Eraiah B, Anavekar EV, Asokan ES (2007) J Mater Sci 42:784. doi: CrossRefGoogle Scholar
  12. 12.
    Sekiya T, Mochida N, Ogawa S (1994) J Non-Cryst Solids 176:105. doi: CrossRefGoogle Scholar
  13. 13.
    Shaltout I, Tang Y, Braunstein R, Abu-Elazm AM (1995) J Phys Chem Solids 56:141. doi: CrossRefGoogle Scholar
  14. 14.
    Rada S, Culea E, Rus V, Pica M, Culea M (2008) J Mater Sci 43(10):3713. doi: CrossRefGoogle Scholar
  15. 15.
    Mendialdua J, Casanova R, Barbaux Y (1995) J Electron Spectrosc Relat Phenom 71:249. doi: CrossRefGoogle Scholar
  16. 16.
    Miyata H, Fujii K, Ono T, Kubokawa Y, Ohno T, Hatayama F (1987) J Chem Soc Faraday Trans 83:675CrossRefGoogle Scholar
  17. 17.
    Culea E, Nicula Al, Bratu I (1984) Phys Stat Sol 83:K15. doi: CrossRefGoogle Scholar
  18. 18.
    Dimitrov V (1987) J Solid State Chem 66:256. doi: CrossRefGoogle Scholar
  19. 19.
    Khattak GD, Tabet N, Wenger LE (2005) Phys Rev B 72:104203. doi: CrossRefGoogle Scholar
  20. 20.
    de Waal D, Hutter C (1994) Mater Res Bull 29:843. doi: CrossRefGoogle Scholar
  21. 21.
    Manara D, Grandjean A, Pinet O, Dussossoy JL, Neuville DR (2007) J Non-Cryst Solids 353:12CrossRefGoogle Scholar
  22. 22.
    Microcal (TM) Origin, version 6.0. Microcal Software, Inc., Northampton, MAGoogle Scholar
  23. 23.
    Pascuta P, Pop L, Rada S, Bosca M, Culea E (2008) J Mater Sci Mater Electron 19(5):424. doi: CrossRefGoogle Scholar
  24. 24.
    Khattak GD, Tabet N, Wenger LE (2005) Phys Rev B 72:104202. doi: CrossRefGoogle Scholar
  25. 25.
    Ganguli M, Rao KJ (1999) J Solid State Chem 145:65. doi: CrossRefGoogle Scholar
  26. 26.
    Fayon F, Bessada C, Coutures JP, Massiot D (1999) Inorg Chem 38:5212. doi: CrossRefGoogle Scholar
  27. 27.
    Abid M, Et-labirou M, Taibi M (2003) Mater Sci Eng B 97:20. doi: CrossRefGoogle Scholar
  28. 28.
    Hanon A, Grimley D, Hulme R, Wright A, Sincler R (1994) J Non-Cryst Solids 177:299. doi: CrossRefGoogle Scholar
  29. 29.
    Rada S, Culea M, Neumann M, Culea E (2008) Chem Phys Lett 460(1–3):196. doi: CrossRefGoogle Scholar
  30. 30.
    Rada S, Pascuta P, Bosca M, Culea M, Pop L, Culea E (2008) Vibrat Spectrosc. doi: CrossRefGoogle Scholar
  31. 31.
    Rada S, Culea E, Bosca M, Culea M, Muntean R, Pascuta P (2008) Vibrat Spectrosc. doi: CrossRefGoogle Scholar
  32. 32.
    Pop L, Culea E, Bosca M, Neumann M, Muntean R, Pascuta P et al (2008) J Optoelectr Adv Mater 10(3):619Google Scholar
  33. 33.
    Sabadel JC, Armand P, Cachau-Herreillat D, Baldeck P, Doclot O, Ibanez A et al (1997) J Solid State Chem 132:411. doi: CrossRefGoogle Scholar
  34. 34.
    Fargin E, Berthereau A, Cardinal T, Le Flem G, Ducase L, Canioni L et al (1996) J Non-Cryst Solids 203:96. doi: CrossRefGoogle Scholar
  35. 35.
    Manara D, Grandjean A, Pinet O, Dussossoy JL, Neuville DR (2007) J Non-Cryst Solids 353:12CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of PhysicsTechnical University of Cluj-NapocaCluj-NapocaRomania
  2. 2.Faculty of PhysicsBabes-Bolyai University of Cluj-NapocaCluj-NapocaRomania

Personalised recommendations