Advertisement

Journal of Materials Science

, Volume 43, Issue 19, pp 6486–6494 | Cite as

Adsorption and photocatalytic decomposition of organic molecules on carbon-coated TiO2

  • Tae-Won Kim
  • Min-Joo Lee
  • Wang-Geun Shim
  • Jae-Wook Lee
  • Tae-Young Kim
  • Dae-Haeng Lee
  • Hee MoonEmail author
Article

Abstract

Carbon-coated anatase TiO2 samples were prepared from the mixture of poly vinyl alcohol (PVA) and commercial TiO2 (P-25) with different mass ratios and heating temperatures. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), energy dispersive spectrometer (EDX), transmission electron microscope (TEM), and nitrogen adsorption analyses. The adsorption properties and photocatalytic activity of commercial and carbon-coated TiO2 catalysts were compared for the oxidation of methylene blue (MB) and bisphenol-A (BPA). It was interesting to find that the transition from anatase to rutile was suppressed by carbon coating of TiO2 at high temperature up to 800 °C. The carbon-coated TiO2 samples have a higher surface area and a greater adsorption amount than commercial P-25 because of the thin layer of carbon that covered TiO2. It was also observed that the photodecomposition efficiency was dependent on the crystallinity of the carbon-coated sample.

Keywords

TiO2 Rutile Methylene Blue Photocatalytic Activity Photodecomposition 

References

  1. 1.
    Ohko Y, Ando I, Niwa C, Tatsuma T, Yamamura T, Nakamura T et al (2002) Environ Sci Technol 35:2365. doi: https://doi.org/10.1021/es001757t CrossRefGoogle Scholar
  2. 2.
    Lee JM, Kim MS, Kim BW (2004) Water Res 38:3605. doi: https://doi.org/10.1016/j.watres.2004.05.015 CrossRefGoogle Scholar
  3. 3.
    Tryba B, Morawski AW, Tsumura T, Toyoda M, Inagaki M (2004) J Photoch Photobiol Chem (Kyoto) 167:127CrossRefGoogle Scholar
  4. 4.
    Tsumura T, Kojutani N, Umemura H, Toyoda M, Inagaki M (2002) Appl Surf Sci 196:429. doi: https://doi.org/10.1016/S0169-4332(02)00081-8 CrossRefGoogle Scholar
  5. 5.
    Li Y, Zhang S, Yu O, Yin W (2007) Appl Surf Sci 253:9254. doi: https://doi.org/10.1016/j.apsusc.2007.05.057 CrossRefGoogle Scholar
  6. 6.
    Tsumura T, Kojitan N, Izumi I, Iwashita N, Toyoda M, Inagaki M (2002) J Mater Chem 12:1391. doi: https://doi.org/10.1039/b201942f CrossRefGoogle Scholar
  7. 7.
    Tsumura T, Kojitan N, Umemura H, Toyoda M, Inagaki M (2002) Appl Surf Sci 196:429. doi: https://doi.org/10.1016/S0169-4332(02)00081-8 CrossRefGoogle Scholar
  8. 8.
    Torimoto T, Okawa Y, Takeda N, Yoneyama H (1997) J Photoch Photobiol Chem (Kyoto) 103:153CrossRefGoogle Scholar
  9. 9.
    Inagaki M, Kojin F, Tryba B, Toyoda M (2005) Carbon 43:1652. doi: https://doi.org/10.1016/j.carbon.2005.01.043 CrossRefGoogle Scholar
  10. 10.
    Zhang X, Zhou M, Lei L (2006) Carbon 44:325. doi: https://doi.org/10.1016/j.carbon.2005.07.033 CrossRefGoogle Scholar
  11. 11.
    Inagaki M, Imai T, Yoshikawa T, Tryba B (2004) Appl Catal B Environ 51:247. doi: https://doi.org/10.1016/j.apcatb.2004.02.017 CrossRefGoogle Scholar
  12. 12.
    Inagaki M, Hirose Y, Matsunaga T, Tsumura T, Toyoda M (2003) Carbon 41:2619. doi: https://doi.org/10.1016/S0008-6223(03)00340-3 CrossRefGoogle Scholar
  13. 13.
    Li Y, Zhang S, Yu O, Yin W (2007) Appl Surf Sci 253:9254. doi: https://doi.org/10.1016/j.apsusc.2007.05.057 CrossRefGoogle Scholar
  14. 14.
    Fiona L, Brian R, Heather M (2002) J Photoch Photobiol Chem (Kyoto) 148:137CrossRefGoogle Scholar
  15. 15.
    Jaroniec M, Madey R, Choma J, Piotrowska J (1988) J Colloid Interface Sci 125(2):561. doi: https://doi.org/10.1016/0021-9797(88)90022-7 CrossRefGoogle Scholar
  16. 16.
    Podko′scielny P, Nieszporek K, Szabelski P (2006) Colloid Surf A Physicochem Eng Aspects 277:52CrossRefGoogle Scholar
  17. 17.
    Konstantinou IK, Albanis TA (2004) Appl Catal B Environ 49:1. doi: https://doi.org/10.1016/j.apcatb.2003.11.010 CrossRefGoogle Scholar
  18. 18.
    Hoffman M, Martin S, Choi W, Bahnemann D (1995) Chem Rev 95:69. doi: https://doi.org/10.1021/cr00033a004 CrossRefGoogle Scholar
  19. 19.
    Peral J, Domenech X, Ollis D (1997) J Chem Technol Biotechnol 70:117. doi:10.1002/(SICI)1097-4660(199710)70:2<117::AID-JCTB746>3.0.CO;2-FCrossRefGoogle Scholar
  20. 20.
    Poulios I, Aetopoulou I (1999) J Chem Technol Biotechnol 74:357. doi:10.1002/(SICI)1097-4660(199904)74:4<349::AID-JCTB5>3.0.CO;2-7Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Tae-Won Kim
    • 1
  • Min-Joo Lee
    • 2
  • Wang-Geun Shim
    • 1
  • Jae-Wook Lee
    • 3
  • Tae-Young Kim
    • 4
  • Dae-Haeng Lee
    • 5
  • Hee Moon
    • 1
    Email author
  1. 1.School of Applied Chemical EngineeringChonnam National UniversityGwangjuKorea
  2. 2.R&D CenterNEXEN TIRE CorporationYangsan KyungnamKorea
  3. 3.Department of Chemical and Biochemical EngineeringChosun UniversityGwangjuKorea
  4. 4.Department of Environmental EngineeringChonnam National UniversityGwangjuKorea
  5. 5.Gwangju Public Health and Environmental Research InstituteGwangjuKorea

Personalised recommendations