Journal of Materials Science

, Volume 43, Issue 19, pp 6441–6452 | Cite as

On interfacial velocities during abnormal grain growth at ultra-high driving forces

  • G. D. HibbardEmail author
  • K. T. Aust
  • U. Erb
Interface Science


Interfacial velocities during grain growth studies of nanocrystalline materials have been investigated. Two types of interfacial velocity parameters were developed in Ni and Ni–Co alloys. The first was a transformation-averaged parameter based on the time to consume the nanocrystalline matrix by abnormal grain growth. The second was a time-averaged parameter based on the rate of size increase of the largest growing grains. Despite the ultra-high driving force and rapid loss of nanostructure during annealing, the averaged grain boundary velocities are considerably lower than reported velocities during recrystallization in high purity systems for the same homologous temperature. It was found that the time-averaged abnormal growth front velocity decreased with increasing migration distance, which was interpreted in terms of a dynamic sulfur segregation model.


Grain Size Distribution Boundary Migration Boundary Velocity Interfacial Velocity Bright Field Transmission Electron Microscopy 



Financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and nanocrystalline Ni and Ni–Co samples from Integran Technologies Inc. of Toronto, Canada are gratefully acknowledged.


  1. 1.
    Klement U, Erb U, El-Sherik AM et al (1995) Mater Sci Eng A 203:177. doi: CrossRefGoogle Scholar
  2. 2.
    Wang N, Wang Z, Aust KT et al (1997) Acta Mater 45:1655. doi: CrossRefGoogle Scholar
  3. 3.
    Natter H, Schmelzer M, Hemplemann R (1998) J Mater Res 13:1186. doi: CrossRefGoogle Scholar
  4. 4.
    Hibbard GD, Erb U, Aust KT et al (2000) Mater Res Soc Symp Proc 580:183CrossRefGoogle Scholar
  5. 5.
    Hibbard GD, Erb U, Aust KT et al (2002) Mater Sci Forum 386–388:387CrossRefGoogle Scholar
  6. 6.
    Hibbard GD, Aust KT, Palumbo G et al (2001) Scr Mater 44:513. doi: CrossRefGoogle Scholar
  7. 7.
    Hibbard GD, Radmilovic V, Aust KT et al (2008) Mater Sci Eng A 494:232. doi: CrossRefGoogle Scholar
  8. 8.
    Cheng L, Hibbard GD (2008) Mater Sci Eng A. doi: CrossRefGoogle Scholar
  9. 9.
    Kim BK, Szpunar JA, Varano R (2002) Mater Sci Forum 408–412:937CrossRefGoogle Scholar
  10. 10.
    Seo JH, Kim JK, Yim TH et al (2005) Mater Sci Forum 475–479:3483CrossRefGoogle Scholar
  11. 11.
    Klement U, da Silva M (2007) J Alloys Comp 434–435:714CrossRefGoogle Scholar
  12. 12.
    Lee SB, Hwang NM, Yoon DY, Henry MF (2000) Met Mater Trans A 31:985CrossRefGoogle Scholar
  13. 13.
    Czerwinski F, Li H, Megret M et al (1997) Scripta Mater 37:1967CrossRefGoogle Scholar
  14. 14.
    Park YB, Park J, Ha CS et al (2002) Mater Sci Forum 408–412:919CrossRefGoogle Scholar
  15. 15.
    Kim JK, Seo JH, Park YB (2004) Mater Sci Forum 467–470:1313CrossRefGoogle Scholar
  16. 16.
    Hibbard GD, Aust KT, Erb U (2006) Mater Sci Eng A 433:195CrossRefGoogle Scholar
  17. 17.
    Erb U, El-Sherik AM (1994) US Patent 5353266Google Scholar
  18. 18.
    Erb U, El-Sherik AM, Cheung CKS et al (1995) US Patent 5433797Google Scholar
  19. 19.
    El-Sherik AM, Erb U (1995) J Mater Sci 30:5743CrossRefGoogle Scholar
  20. 20.
    Chen LC, Spaepen F (1991) J Appl Phys 69:679CrossRefGoogle Scholar
  21. 21.
    Haessner F, Hofman S (1978) In: Haessner F (ed) Recrystallization of metallic materials. Riederer Verlag, StuttgartGoogle Scholar
  22. 22.
    Gottstein G, Shvindlerman LS (1999) Grain boundary migration in metals. CRC Press, New YorkGoogle Scholar
  23. 23.
    Humphreys FJ, Hatherley M (2004) Recrystallization and related annealing phenomena. Elsevier, OxfordGoogle Scholar
  24. 24.
    DeHoff RT, Rhines FN (1968) Quantitative microscopy. McGraw-Hill, New YorkGoogle Scholar
  25. 25.
    Murr LE (1975) Interfacial phenomena in metals and alloys. Addison-Wesley, Don Mills, CanadaGoogle Scholar
  26. 26.
    Aust KT, Rutter JW (1959) Trans AIME 215:119Google Scholar
  27. 27.
    Shvindlerman LS, Gottstein G, Molodov DA (1997) Phys Stat Sol A 160:419CrossRefGoogle Scholar
  28. 28.
    Gordon P, Vandermeer RA (1962) Trans AIME 224:917Google Scholar
  29. 29.
    Fromageau R (1969) Mem Sci Rev Metall 66:287Google Scholar
  30. 30.
    Haessner F, Holzer HP (1974) Acta Met 22:695CrossRefGoogle Scholar
  31. 31.
    Grunwald W, Haessner F (1970) Acta Metall 18:217CrossRefGoogle Scholar
  32. 32.
    Huang Y, Humphreys FJ (1999) Acta Mater 47:2259CrossRefGoogle Scholar
  33. 33.
    LeGall R, Liao G, Saindrenan G (1999) Scripta Mater 41:427CrossRefGoogle Scholar
  34. 34.
    Schmidt S, Nielsen SF, Gundlach C et al (2004) Science 305:229CrossRefGoogle Scholar
  35. 35.
    Burke JE, Turnbull D (1952) Prog Metal Phys 3:220CrossRefGoogle Scholar
  36. 36.
    Cahn JW (1962) Acta Met 10:789CrossRefGoogle Scholar
  37. 37.
    Lucke K, Stuwe HP (1963) In: Himmel L (ed) Recovery and recrystallization of metals. Wiley, New YorkGoogle Scholar
  38. 38.
    Smith CS (1948) Trans AIME 175:15Google Scholar
  39. 39.
    Pierantoni M, Aufray B, Cabane F (1985) Acta Met 33:1625CrossRefGoogle Scholar
  40. 40.
    Bruemmer SM, Jones RJ, Thomas MT et al (1981) In: Louthan MR, McNitt RP, Sisson RD Jr (eds) Environmental degradation of engineering materials in aggressive environments. Virgina Tech Printing, Blacksburg, VAGoogle Scholar
  41. 41.
    Beaunier L, Chefi C, Froment M et al (1981) Mem Sci Rev Metall 78:417Google Scholar
  42. 42.
    Aust KT, Rutter JW (1962) In: Ultra high purity metals. ASM, Metals Park OHGoogle Scholar
  43. 43.
    Roeder E, Klerk M (1963) Z Metallkde 54:462Google Scholar
  44. 44.
    Hook RE, Garrett HJ, Adair AM (1963) Trans AIME 227:145Google Scholar
  45. 45.
    Barbier-Vitart J, Saindrenan G, Larere A (1982) J Mater Sci 17:387CrossRefGoogle Scholar
  46. 46.
    Saindrenan G, Larere A (1984) Scripta Met 18:969CrossRefGoogle Scholar
  47. 47.
    Le Gall R, Saindrenan G, Roptin D (1992) Scripta Mater 26:1291CrossRefGoogle Scholar
  48. 48.
    Thuvander M, Abraham M, Cerezo A et al (2001) Mater Sci Tech 17:961CrossRefGoogle Scholar
  49. 49.
    Hibbard GD, Aust KT, Erb U (2006) Acta Mater 54:2501CrossRefGoogle Scholar
  50. 50.
    Mehta SC, Smith DA, Erb U (1995) Mater Sci Eng A 204:227CrossRefGoogle Scholar
  51. 51.
    Hatter K, Follstaedt DM, Knapp JA, Robertson IM (2008) Acta Mater 56:794CrossRefGoogle Scholar
  52. 52.
    Knapp JA, Follstaedt DM (2004) J Mater Res 19:218CrossRefGoogle Scholar
  53. 53.
    Natter H, Loffler MS, Krill CE, Hempelmann R (2001) Scripta Mater 44:2321CrossRefGoogle Scholar
  54. 54.
    Gleiter H (1979) Acta Metall 27:187CrossRefGoogle Scholar
  55. 55.
    Estrin Y, Gottstein G, Shvindlerman LS (1999) Scripta Mater 41:385CrossRefGoogle Scholar
  56. 56.
    Palumbo G, Thorpe SJ, Aust KT (1990) Script Metall 24:1347CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations