Journal of Materials Science

, Volume 43, Issue 21, pp 6944–6951 | Cite as

Production of A356–SiCP composite by an innovative casting process

  • S. M. H. MirbagheriEmail author
  • S. Sookhtehsaraee


In the present study, a novel procedure was introduced for casting of metal matrix composites by adding a mortar consisting expandable polystyrene beads, carboxy methyl cellulose paste, SiC particles and water as a mould pattern. This process was applied for A356 Aluminium alloy/SiCP composite. Technology of this method is based on a balance between the solidification rate and the buoyancy of the reinforcement particles. The experimental results show that effective parameters in fabrication of a sound part are density and size of pre-puff polystyrene beads, percentage of the reinforcement particles, mould material, thickness of mould cavity, casting temperature and cooling rate. However, the innovative method will only be successful for the thin-wall parts, which their solidification times become shorter than the floatation time of the reinforcement particles.


Metal Matrix Composite Solidification Time Matrix Alloy A356 Alloy Reinforcement Particle 


  1. 1.
    Dole TJA, Bowen P (1996) Composites Part A 27A:655. doi: CrossRefGoogle Scholar
  2. 2.
    McDanels DL (1985) Metall Trans A 16A:1105. doi: CrossRefGoogle Scholar
  3. 3.
    Miller WS, Lenssen LA, Humphreys FJ (1989) In: Sanders TH Jr, Starke EA Jr (eds) Proceedings of the fifth international aluminum-lithium conference. MCEP, Birmingham, p 931Google Scholar
  4. 4.
    Yang Y, Cady C, Hu MS, Zok F, Mehrabian AGR (1990) Acta Metall Mater 38:2613. doi: CrossRefGoogle Scholar
  5. 5.
    Clyne TW, Withers PJ (1995) An introduction to metal matrix composites. Cambridge University Press, CambridgeGoogle Scholar
  6. 6.
    Lee JC, Byun JY, Park SB, Lee HI (1998) Acta Mater 46:1771. doi: CrossRefGoogle Scholar
  7. 7.
    Tham LM, Gupta M, Cheng L (2001) Acta Mater 49:3243. doi: CrossRefGoogle Scholar
  8. 8.
    Lee JC, Seok HK, Lee HI (1999) Mater Res Bull 34:35. doi: CrossRefGoogle Scholar
  9. 9.
    Lee JC, Byun JY, Oh CS, Seok HK, Lee HI (1997) Acta Mater 45:5303. doi: CrossRefGoogle Scholar
  10. 10.
    Zhou W, Xu ZM (1997) J Mater Process Technol 63:358. doi: CrossRefGoogle Scholar
  11. 11.
    Bartos G, Xia K (1996) Proceedings of the 4th international conference on semi-solid processing of alloy and composites, University of Sheffield, EnglandGoogle Scholar
  12. 12.
    Singer ARE (1991) Mater Sci Eng A 135:13. doi: CrossRefGoogle Scholar
  13. 13.
    Yeu DH (1995) A study on the formation mechanism and heat transfer analysis of billet by spray forming prices. Ph.D dissertation, Seoul National University, Seoul, KoreaGoogle Scholar
  14. 14.
    Lee JC, Park SB, Seok HK, Oh CS, Lee HI (1998) Acta Mater 46:2635. doi: CrossRefGoogle Scholar
  15. 15.
    Shen Y-L, Williams JJ, Piotrowski G, Chawla N, Guo YL (2001) Acta Mater 49:3219. doi: CrossRefGoogle Scholar
  16. 16.
    Hashim J, Looney L, Hashmi MSJ (2001) Mater Process Technol 119:324. doi: CrossRefGoogle Scholar
  17. 17.
    Ruddle W (1975) The solidification of castings. The Institute of Metals Press, LondonGoogle Scholar
  18. 18.
    Bindumadhavan PN, Chia TK, Chandrasekaran M, Wah HK, Lam LN, Prabhakar O (2001) Mater Sci Eng A315:217CrossRefGoogle Scholar
  19. 19.
    Roy M, Venkataraman B (1992) Metall Trans A 23:2833CrossRefGoogle Scholar
  20. 20.
    Akhlaghi F, Lajavardi A, Maghanaki HM (2004) Mater Process Technol 155–156:1874. doi: CrossRefGoogle Scholar
  21. 21.
    Skolianos S, Kattamis TZ (1993) Mater Sci Eng A 163:107. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Mining and Metallurgical EngineeringAmirkabir University of TechnologyTehranIran

Personalised recommendations