Journal of Materials Science

, Volume 43, Issue 23–24, pp 7391–7396 | Cite as

Mechanical properties of ultrafine grained ferritic steel sheets fabricated by rolling and annealing of duplex microstructure

  • Yoshitaka OkitsuEmail author
  • Naoki Takata
  • Nobuhiro Tsuji
Ultrafine-Grained Materials


A new route to fabricate ultrafine grained (UFG) ferritic steel sheets without severe plastic deformation is proposed in this article. A low-carbon steel sheet with a duplex microstructure composed of ferrite and martensite was cold-rolled to a reduction of 91% in thickness, and then annealed at 620–700 °C. The microstructure obtained through the process with annealing temperatures below 700 °C was the UFG ferrite including fine cementite particles homogenously dispersed. The grain size of ferrite matrix changed from 0.49 to 1.0 μm depending on the annealing temperature. Dynamic tensile properties of the produced UFG steels were investigated. The obtained UFG ferrite–cementite steels without martensite phase showed high strain rate sensitivity in flow stress. The UFG ferritic steels are expected to have high potential to absorb crash energy when applied to automobile body.


Ferrite Martensite Cementite Strain Rate Sensitivity Ferrite Matrix 


  1. 1.
    Tsuji N, Ito Y, Saito Y, Minamino Y (2002) Scripta Mater 47:893. doi: CrossRefGoogle Scholar
  2. 2.
    Tsuji N, Okuno S, Koizumi Y, Minamino Y (2004) Mater Trans 45:2272. doi: CrossRefGoogle Scholar
  3. 3.
    Jia D, Ramesh KT, Ma E (2003) Acta Mater 5:3495. doi: CrossRefGoogle Scholar
  4. 4.
    Tsuchida N, Masuda H, Harada Y, Fukaura K, Tomota Y, Nagai K (2008) Mater Sci Eng A 488:446. doi: CrossRefGoogle Scholar
  5. 5.
    Segal VM (1995) Mater Sci Eng A 197:157. doi: CrossRefGoogle Scholar
  6. 6.
    Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Scripta Mater 35:143. doi: CrossRefGoogle Scholar
  7. 7.
    Valiev RZ, Korznikov AV, Mulyukov RR (1993) Mater Sci Eng A 168:141. doi: CrossRefGoogle Scholar
  8. 8.
    Tanimura S, Mimura K, Umeda T (2003) J Phys IV 110:385. doi: Google Scholar
  9. 9.
    Chuman Y, Kimura K, Tanimura S (1997) Int J Impact Eng 19:165. doi: CrossRefGoogle Scholar
  10. 10.
    Website of Saginomiya Seisakusyo Inc. Accessed 22 Aug 2008
  11. 11.
    Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Elsevier, Oxford, p 457Google Scholar
  12. 12.
    Kamikawa N, Sakai T, Tsuji N (2007) Acta Mater 55:5873. doi: CrossRefGoogle Scholar
  13. 13.
    Ueji R, Tsuji N, Minamino Y, Koizumi Y (2002) Acta Mater 50:4177. doi: CrossRefGoogle Scholar
  14. 14.
    Morito S, Huang X, Furuhara T, Maki T, Hansen N (2004) Proceedings of the 25th Riso international symposium on materials science, p 453Google Scholar
  15. 15.
    Kamikawa N, Tsuji N, Saito Y (2003) Tetsu-to-Hagane 89:273 (in Japanese)CrossRefGoogle Scholar
  16. 16.
    Takagi S, Tokita Y, Sato K, Shimizu T, Hashiguchi K, Ogawa K et al (2005) Spec Publ Soc Automot Eng No. SP-1954:7Google Scholar
  17. 17.
    Takahashi M, Uenishi A, Yoshita H, Kuriyama Y (2003) Int Body Eng Conf 2003:7Google Scholar
  18. 18.
    Tsuchida N, Tomota Y, Nagai K (2004) Tetsu-to-Hagane 90:1043 (in Japanese)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yoshitaka Okitsu
    • 1
    Email author
  • Naoki Takata
    • 2
  • Nobuhiro Tsuji
    • 3
  1. 1.Automobile R&D CenterHonda R&D, Co., Ltd.Haga-gunJapan
  2. 2.Department of Metallurgy and Ceramics Science, Graduate School of Science and EngineeringTokyo Institute of TechnologyTokyoJapan
  3. 3.Department of Adaptive Machine Systems, Graduate School of EngineeringOsaka UniversitySuita, OsakaJapan

Personalised recommendations