Advertisement

Journal of Materials Science

, Volume 43, Issue 21, pp 6952–6959 | Cite as

Creep deformation mechanism of magnesium-based alloys

  • Jingli Yan
  • Yangshan SunEmail author
  • Feng Xue
  • Jing Bai
  • Shan Xue
  • Weijian Tao
Article

Abstract

Two heat-resistant magnesium alloys AJC421 and Mg-2Nd were prepared. Both as-cast Mg-2Nd and AJC421 alloys exhibited good creep resistance in comparison with commonly used magnesium alloys. The improvement in creep properties through Nd addition to pure magnesium is attributed to both solid solution and precipitation hardening. The stress exponents of 4.5–5.5 and activation energies of 70.0–96.0 kJ/mol obtained from the as-cast Mg-2Nd alloy at low temperatures and low stresses indicate the five power law can be used for predicting the creep mechanism. The additions of alkaline earth elements Sr and Ca into Mg–Al alloys suppress the discontinuous precipitation of Mg17Al12 and form thermal-stable intermediate phases at grain boundaries, leading to effective restriction to grain boundary sliding and migration. However, the mechanism responsible for creep deformation of Mg–Al based alloys with Ca and Sr additions is not consistent with the results of microstructure observations performed on the alloys before and after creep tests.

Keywords

Magnesium Alloy Apparent Activation Energy Creep Test Stress Exponent Creep Property 

Notes

Acknowledgement

This research was supported by the Natural Science Foundation of Jiangsu Province (No. BK2004208) and the Foundation for Excellent Doctoral Dissertation of Southeast University.

References

  1. 1.
  2. 2.
    Lu YZ, Wang QD, Zeng XQ et al (2000) Mater Sci Eng A 278:66. doi: https://doi.org/10.1016/S0921-5093(99)00604-8 CrossRefGoogle Scholar
  3. 3.
    Pekguleryuz MO, Kaya AA (2003) Adv Eng Mater 5:866. doi: https://doi.org/10.1002/adem.200300403 CrossRefGoogle Scholar
  4. 4.
    Blawert C, Hort N, Kainer KU (2004) Trans Indian Inst Metab 57:397Google Scholar
  5. 5.
    Mordike BL (2002) Mater Sci Eng A 324:103. doi: https://doi.org/10.1016/S0921-5093(01)01290-4 CrossRefGoogle Scholar
  6. 6.
    Bai J, Sun YS, Xue S et al (2006) Mater Sci Eng A 419:181. doi: https://doi.org/10.1016/j.msea.2005.12.017 CrossRefGoogle Scholar
  7. 7.
    Sherby OD, Burke PM (1968) Prog Mater Sci 13:323. doi: https://doi.org/10.1016/0079-6425(68)90024-8 CrossRefGoogle Scholar
  8. 8.
    Couret A, Caillard D (1985) Acta Mater 33:1447. doi: https://doi.org/10.1016/0001-6160(85)90045-8 CrossRefGoogle Scholar
  9. 9.
    Evangelista E, Gariboldi E, Lohne O et al (2004) Mater Sci Eng A 387–389:41. doi: https://doi.org/10.1016/j.msea.2004.02.077 CrossRefGoogle Scholar
  10. 10.
    Evans RW, Wilshire B (1985) Creep of metals and alloys. The Institute of Metals, New YorkGoogle Scholar
  11. 11.
    Xue S, Sun YS, Zhu TB et al (2005) Trans Nonferr Met Soc 15:863Google Scholar
  12. 12.
    Wang JG, Hsiung LM, Nieh TG et al (2001) Mater Sci Eng A 315:81. doi: https://doi.org/10.1016/S0921-5093(01)01209-6 CrossRefGoogle Scholar
  13. 13.
    Nagasaki S, Hirabayashi M (2002) Binary alloy phase-diagrams. AGNE Gijutsu Center Co Ltd, TokyoGoogle Scholar
  14. 14.
    American Society for Metals (1973) Metals handbook. Metals Park, OhioGoogle Scholar
  15. 15.
    Nabarro FRN (2007) Encyclopedia of materials: science and technology. Elsevier Science Ltd, Oxford, p 1788Google Scholar
  16. 16.
    Dargush MS, Dunlop GL, Pettersen K (1998) In Mordike BL, Kainer KU (eds) Proceedings volume sponsored by Volkswagen AG. Werkstoff-Informationsgesellschaft, Frankfurt, p 277Google Scholar
  17. 17.
    Shi L, Northwood DO (1994) Acta Metall Mater 42:871. doi: https://doi.org/10.1016/0956-7151(94)90282-8 CrossRefGoogle Scholar
  18. 18.
    Kassner ME, Kumar P, Blum W (2007) Int J Plast 23:980. doi: https://doi.org/10.1016/j.ijplas.2006.10.006 CrossRefGoogle Scholar
  19. 19.
    Kassner ME, Pérez-Prado M-T (2004) Fundamentals of creep in metals and alloys. Elsevier Science Ltd, OxfordGoogle Scholar
  20. 20.
    Weertman J (1957) J Appl Phys 28:362. doi: https://doi.org/10.1063/1.1722747 CrossRefGoogle Scholar
  21. 21.
    Jones RB, Harris JE (1963) Joint international conference on Creep, Part 3A. Inst Mech Eng Proc, NewYorkGoogle Scholar
  22. 22.
  23. 23.
    Crossland IG, Jones RB (1972) Met Sci J 6:162CrossRefGoogle Scholar
  24. 24.
    Crossland IG, Jones RB (1977) Met Sci J 11:504CrossRefGoogle Scholar
  25. 25.
    Nabarro FRN (1967) Philos Mag 16:231. doi: https://doi.org/10.1080/14786436708229736 CrossRefGoogle Scholar
  26. 26.
    Sherby OD, Weertman J (1979) Acta Metall 27:387. doi: https://doi.org/10.1016/0001-6160(79)90031-2 CrossRefGoogle Scholar
  27. 27.
    Mordike BL, Stulikova I (1983) In: Proceedings of the international conference on metallic light alloys. Institution of Metallurgists, London, p 146Google Scholar
  28. 28.
    Suzuki M, Sato H, Maruyama K et al (2001) Mater Sci Eng A 319–321:751. doi: https://doi.org/10.1016/S0921-5093(01)01005-X CrossRefGoogle Scholar
  29. 29.
    Zhao P, Wang QD, Zhai CQ et al (2007) Mater Sci Eng A 444:318. doi: https://doi.org/10.1016/j.msea.2006.08.111 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jingli Yan
    • 1
  • Yangshan Sun
    • 1
    Email author
  • Feng Xue
    • 1
  • Jing Bai
    • 1
  • Shan Xue
    • 2
  • Weijian Tao
    • 3
  1. 1.Jiangsu Key Laboratory for Advanced Metallic MaterialsSoutheast UniversityNanjingPeople’s Republic of China
  2. 2.Ford Motor Research & Engineering (Nanjing) Co. Ltd.NanjingPeople’s Republic of China
  3. 3.Nanjing Welbow Metals Co. Ltd.NanjingPeople’s Republic of China

Personalised recommendations