Journal of Materials Science

, Volume 43, Issue 21, pp 6960–6966 | Cite as

Role of molybdenum on the AISI 316L oxidation at 900 °C

  • H. BuscailEmail author
  • S. El Messki
  • F. Riffard
  • S. Perrier
  • R. Cueff
  • C. Issartel


In situ X-ray diffraction was used to study the oxide formation on AISI 316L stainless steel (SS) specimens during isothermal oxidation at 900 °C in air. Results were compared with those obtained on AISI 304 SS to determine the role of molybdenum on the oxidation process for the AISI 316L SS specimens. Our results show that molybdenum plays a major protective role during steel oxidation. This element is found in a NiMoO4 phase at the internal oxide–metal interface. The high molybdenum content of the alloy hinders the outward diffusion of iron and leads to a lower growth rate and better scale adherence. The oxide scale is then composed of Cr2O3 with a small amount of Mn1.5Cr1.5O4 at the external interface. The improved scale adherence appears to be due to a keying effect at the scale/alloy interface promoted by molybdenum.


Oxide Scale AISI 316L Internal Interface Chromia Scale NiMoO4 


  1. 1.
    Johnson AL, Parsons D, Manzerova J, Perry DL, Koury D, Hosterman B et al (2004) J Nucl Mater 328:88. doi: CrossRefGoogle Scholar
  2. 2.
    Syed AA, Denoirjean TA, Fauchais P, Labbe JC (2006) Surf Coat Technol 20:4368. doi: CrossRefGoogle Scholar
  3. 3.
    Pitter J, Cerny F, Cizner J, Suchanek J, Tischler D (2005) Surf Coat Technol 200:73. doi: CrossRefGoogle Scholar
  4. 4.
    Kim S-G, Hong M-Z, Yoon SP, Han J, Nam SW, Lim TH et al (2003) J Sol–Gel Sci Technol 28:297. doi: CrossRefGoogle Scholar
  5. 5.
    Indacochea JE, Smith JL, Litko KR, Karell EJ, Raraz AG (2001) Oxid Met 55:1. doi: CrossRefGoogle Scholar
  6. 6.
    Vernault C, Mendez J (1999) Ann Chimie Sci Materiaux 24:351. doi: CrossRefGoogle Scholar
  7. 7.
    Wang X, Wang LF, Zhu ML, Zhang JS, Lei MK (2006) Trans Nonferrous Met Soc China 16:s676. doi: CrossRefGoogle Scholar
  8. 8.
    Sobral AVC, Hierro MP, Pérez FJ, Ristow W Jr, Franco CV (2000) Mater Corros 51:791. doi:10.1002/1521-4176(200011)51:11<791::AID-MACO791>3.0.CO;2-1CrossRefGoogle Scholar
  9. 9.
    Samanta SK, Mitra SK, Pa TK (2006) Mater Sci Eng A 430:242. doi: CrossRefGoogle Scholar
  10. 10.
    Bautista A, Velasco F, Abenojar J (2003) Corros Sci 45:1343. doi: CrossRefGoogle Scholar
  11. 11.
    Siva Rama Krishna D, Sun Y (2005) Surf Coat Technol 198:447. doi: CrossRefGoogle Scholar
  12. 12.
    Siva Rama Krishna D, Sun Y (2005) Appl Surf Sci 252:1107. doi: CrossRefGoogle Scholar
  13. 13.
    Furman P, Gluszek J, Masalski J (1997) J Mater Sci Lett 16:471. doi: CrossRefGoogle Scholar
  14. 14.
    Vigen Karimi M, Sinha SK, Kothari DC, Khannab AK, Tyagic AK (2002) Surf Coat Technol 158–159:609. doi: CrossRefGoogle Scholar
  15. 15.
    Singh R, Dahotre NB (2005) J Mater Sci 40:5619. doi: CrossRefGoogle Scholar
  16. 16.
    Stokes PSN, Stott FH, Wood GC (1989) Mater Sci Eng A 121:549CrossRefGoogle Scholar
  17. 17.
    Bautista A, Velasco F, Campos M, Rabanal ME, Torralba JM (2003) Oxid Met 59:373. doi: CrossRefGoogle Scholar
  18. 18.
    Karimi N, Riffard F, Rabaste F, Perrier S, Cueff R, Issartel C et al (2008) Appl Surf Sci 254:2292. doi: CrossRefGoogle Scholar
  19. 19.
    Riffard F, Buscail H, Caudron E, Cueff R, Issartel C, El Messki S et al (2004) Mater Sci Forum 461–464:175CrossRefGoogle Scholar
  20. 20.
    Jacob KT, Kale GM, Iyengar GNK (1987) J Mater Sci 22:4274. doi: CrossRefGoogle Scholar
  21. 21.
    Jacob YP, Haanappel VAC, Stroosnijder MF, Buscail H, Fielitz P, Borchardt G (2002) Corros Sci 44:2027. doi: CrossRefGoogle Scholar
  22. 22.
    Chen JH, Rogers PM, Little JA (1997) Oxid Met 47:381. doi: CrossRefGoogle Scholar
  23. 23.
    Armand F, Davidson JH (1990) In: Lacombe P, Baroux B, Beranger G (eds) Les Editions de PhysiqueGoogle Scholar
  24. 24.
    Huntz AM (1995) Mater Sci Eng A 201:211CrossRefGoogle Scholar
  25. 25.
    Basu SN, Yurek GJ (1991) Oxid Met 36:281. doi: CrossRefGoogle Scholar
  26. 26.
    Evans HE, Hilton DA, Holm RA, Webster SJ (1983) Oxid Met 19:1. doi: CrossRefGoogle Scholar
  27. 27.
    Landkof M, Levy AV, Boone DH, Gray R, Yaniv E (1985) Corros Sci 41:344CrossRefGoogle Scholar
  28. 28.
    Aguilar G, Larpin JP, Colson JC (1992) Mémoires et Etudes Scientifiques 89:447Google Scholar
  29. 29.
    Seal S, Bose SK, Roy SK (1994) Oxid Met 41:139. doi: CrossRefGoogle Scholar
  30. 30.
    Durham RN, Gleeson B, Young DJ (1998) Oxid Met 50:139. doi: CrossRefGoogle Scholar
  31. 31.
    Nagai H (1989) Mater Sci Forum 43:75CrossRefGoogle Scholar
  32. 32.
    Pérez FJ, Cristobal MJ, Hierro MP, Pedraza F (1999) Surf Coat Technol 120–121:442. doi: CrossRefGoogle Scholar
  33. 33.
    Paúl A, Elmrabet S, Alves LC, Da Silva MF, Soares JC, Odriozola JA (2001) NIM Phys Res B 181:394. doi: CrossRefGoogle Scholar
  34. 34.
    Manning MI (1983) Gesell Metall 1:283Google Scholar
  35. 35.
    Stott FH, Wood GC, Stringer J (1995) Oxid Met 44:113. doi: CrossRefGoogle Scholar
  36. 36.
    Yanagihara K, Przybylski K, Mauryama T (1997) Oxid Met 47:277. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • H. Buscail
    • 1
    Email author
  • S. El Messki
    • 1
  • F. Riffard
    • 1
  • S. Perrier
    • 1
  • R. Cueff
    • 1
  • C. Issartel
    • 1
  1. 1.LVEEM, Laboratoire Vellave sur l’Elaboration et l’Etude des Matériaux, EA 3864Université de Clermont FerrandLE PUY-en-VELAYFrance

Personalised recommendations