Advertisement

Journal of Materials Science

, Volume 44, Issue 6, pp 1435–1441 | Cite as

Titania-coated glass microballoons and cenospheres for environmental applications

  • M. Koopman
  • K. K. ChawlaEmail author
  • W. Ricci
  • K. Carlisle
  • G. M. Gladsyz
  • M. Lalor
  • M. L. Jones
  • K. Kerr
  • M. P. George
  • G. Gouadec
  • Aurélie Tournié
Syntactic and Composite Foams

Abstract

Functional titania coatings on glass microballoons (GMBs) and cenospheres have a broad range of potential environmental applications, primarily in purification of drinking water and treatment of industrial wastewater. The heterogeneous photocatalytic capabilities of titania films and particles have been extensively examined in the literature as effective alternatives to current technologies. Although the chemistry of titania films for photocatalysis has been studied, titania-coated GMBs have not yet been extensively considered and the materials science aspects of the titania-GMB and titania-cenosphere systems have not been addressed. We have examined the microstructure, morphology, and mechanical properties of titania coatings on both cenospheres and commercially produced GMBs. Scanning electron microscopy was used to examine coating coverage and defects. Energy dispersive X-ray spectroscopy and Raman spectroscopy were used for element and phase identification, respectively. Hardness and modulus measurements of the titania coatings and the GMB and cenosphere materials were done by nanoindentation. Additionally, the photocatalytic activity of the titania-coated GMB system was tested on Procion Red dye using two different types of mixing, a magnetic stirrer and an aeration bubbler apparatus. The titania coatings showed good coverage and retention except in the case of magnetic stirring, where significant coating loss was observed.

Keywords

Photocatalytic Activity Titania Particle Hollow Microsphere Titania Film Syntactic Foam 

Notes

Acknowledgements

The authors gratefully acknowledge support from the National Science Foundation for their Research Experience for Undergraduates program, as well as a UAB Framework for Global Health Grant, which both supported portions of this work.

References

  1. 1.
    Carlisle K, Chawla KK, Gladysz G, Koopman M (2006) J Mater Sci A 41:3961. doi: https://doi.org/10.1007/s10853-006-7571-y CrossRefGoogle Scholar
  2. 2.
    Herrmann J (1999) Catal Today 53:115. doi: https://doi.org/10.1016/S0920-5861(99)00107-8 CrossRefGoogle Scholar
  3. 3.
    Gelover S, Gomez L, Reyes K, Leal T (2006) Water Res 40:3274. doi: https://doi.org/10.1016/j.watres.2006.07.006 CrossRefGoogle Scholar
  4. 4.
    Kumar S, Fedorov A, Gole J (2005) Appl Catal Environ 57:93. doi: https://doi.org/10.1016/j.apcatb.2004.10.012 CrossRefGoogle Scholar
  5. 5.
    Assabane A, Ichou Y, Tahiri H, Guillard C, Hermann J (2000) J Appl Catal Environ 24:71. doi: https://doi.org/10.1016/S0926-3373(99)00094-6 CrossRefGoogle Scholar
  6. 6.
    Visnescu C, Sanijines R, Levy F, Parvulescu V (2005) Appl Catal Environ 60:155. doi: https://doi.org/10.1016/j.apcatb.2005.02.029 CrossRefGoogle Scholar
  7. 7.
    Nair M, Zhenhao L, Heller A (1993) Ind Eng Chem Res 32:2318. doi: https://doi.org/10.1021/ie00022a015 CrossRefGoogle Scholar
  8. 8.
    Krichevskaya M, Malygina T, Peis S, Kallas J (2001) Water Sci Technol 44:1Google Scholar
  9. 9.
    Petrowski J, Bulska A, Jozwiak W (2005) Environ Protein Eng 31:61Google Scholar
  10. 10.
    Stokke J, Mazyck D, Wu C, Sheahan R (2006) Environ Prog 25:312. doi: https://doi.org/10.1002/ep.10164 CrossRefGoogle Scholar
  11. 11.
    Faisal M, Tariq M, Muneer M (2007) Dyes Pigments 72:233. doi: https://doi.org/10.1016/j.dyepig.2005.08.020 CrossRefGoogle Scholar
  12. 12.
    Yu J, Ho W, Yu J, Yip H, Wong P, Zhao J (2005) Environ Sci Technol 39:1175. doi: https://doi.org/10.1021/es035374h CrossRefGoogle Scholar
  13. 13.
    Christensen P, Curtis T, Egerton T, Kosa S, Timlin J (2003) Appl Catal Environ 41:371. doi: https://doi.org/10.1016/S0926-3373(02)00172-8 CrossRefGoogle Scholar
  14. 14.
    Shifu C, Gengyu C (2005) Sol Energy 79:1. doi: https://doi.org/10.1016/j.solener.2004.10.006 CrossRefGoogle Scholar
  15. 15.
    Preis S, Krichevskaya M, Karchenko A (1997) Water Sci Technol 35:265. doi: https://doi.org/10.1016/S0273-1223(97)00034-6 CrossRefGoogle Scholar
  16. 16.
    Carlisle K, Lewis M, Chawla KK, Koopman M, Gladysz G (2007) Acta Mater 55:2301. doi: https://doi.org/10.1016/j.actamat.2006.11.026 CrossRefGoogle Scholar
  17. 17.
    Bockmeyer M, Lohmann P (2007) Thin Solid Films 515:5212. doi: https://doi.org/10.1016/j.tsf.2006.11.193 CrossRefGoogle Scholar
  18. 18.
    Jagtap N, Bhagwat M, Awati P, Ramawamy V (2005) Thermochim Acta 427:37. doi: https://doi.org/10.1016/j.tca.2004.08.011 CrossRefGoogle Scholar
  19. 19.
    Haldimann M (2006) Fracture strength of structural glass elements—analytical and numerical modeling, testing and design, dissertation 3671 de Ecole Polytechnique Federale de Lausanne, Lausanne, SwitzerlandGoogle Scholar
  20. 20.
    Chawla KK (1998) Composite materials, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  21. 21.
    Gouadec G, Colomban P (2007) Prog Cryst Growth Character Mater 55:1. doi: https://doi.org/10.1016/j.pcrysgrow.2007.01.001 CrossRefGoogle Scholar
  22. 22.
    Lee J, Kong S, Kim W, Kim J (2007) Mater Chem Phys 106:39. doi: https://doi.org/10.1016/j.matchemphys.2007.05.019 CrossRefGoogle Scholar
  23. 23.
    Sanz J, Soriano L, Prieto P, Tyuliev G, Morant C, Elizalde E (1998) Thin Solid Films 332:209. doi: https://doi.org/10.1016/S0040-6090(98)01058-X CrossRefGoogle Scholar
  24. 24.
    Gao X, Wachs L (1999) Catal Today 51:233. doi: https://doi.org/10.1016/S0920-5861(99)00048-6 CrossRefGoogle Scholar
  25. 25.
    Chiu K, Wong M, Cheng F, Manan H (2007) Appl Surf Sci 253:6762. doi: https://doi.org/10.1016/j.apsusc.2007.01.121 CrossRefGoogle Scholar
  26. 26.
    Olofinjana A, Bell J, Jamting A (2000) Wear 241:174. doi: https://doi.org/10.1016/S0043-1648(00)00372-0 CrossRefGoogle Scholar
  27. 27.
    Boccaccini A, Acevedo D, Brusatin G, Colombo P (2005) J Eur Ceram Soc 25:1515. doi: https://doi.org/10.1016/j.jeurceramsoc.2004.05.015 CrossRefGoogle Scholar
  28. 28.
    Matsunaga T, Kim I, Hardcastele S, Rohatgi P (2002) Mater Sci Eng A 352:333. doi: https://doi.org/10.1016/S0921-5093(01)01466-6 CrossRefGoogle Scholar
  29. 29.
    Lachheb H, Puzenat E, Houas E, Ksibi M, Elalouil E, Guillard G, Herrmann J (2002) Appl Catal Environ 39:75. doi: https://doi.org/10.1016/S0926-3373(02)00078-4 CrossRefGoogle Scholar
  30. 30.
    So C, Cheng M, Yu J, Wang P (2002) Chemosphere 46:905. doi: https://doi.org/10.1016/S0045-6535(01)00153-9 CrossRefGoogle Scholar
  31. 31.
    Byrne J, Eggins B, Brown M, Mckinney B, Rouse M (1998) Appl Catal Environ 17:25–1. doi: https://doi.org/10.1016/S0926-3373(97)00101-X CrossRefGoogle Scholar
  32. 32.
    Rachel A, Subrahmanyam M, Bourle P (2002) Appl Catal Environ 37:301. doi: https://doi.org/10.1016/S0926-3373(02)00007-3 CrossRefGoogle Scholar
  33. 33.
    Kontos AI, Kontos AG, Tsoukleris D, Vlachos G, Flaras P (2007) Thin Solid Films 515:7370. doi: https://doi.org/10.1016/j.tsf.2007.02.082 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M. Koopman
    • 1
  • K. K. Chawla
    • 1
    Email author
  • W. Ricci
    • 2
  • K. Carlisle
    • 2
  • G. M. Gladsyz
    • 2
  • M. Lalor
    • 1
  • M. L. Jones
    • 1
  • K. Kerr
    • 3
  • M. P. George
    • 3
  • G. Gouadec
    • 4
  • Aurélie Tournié
    • 4
  1. 1.Environmental Health Engineering Program and Department of Materials Science and EngineeringUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Trelleborg Emerson Cuming, Inc.MansfieldUSA
  3. 3.Birmingham Southern UniversityBirminghamUSA
  4. 4.LADIR-CNRSThiaisFrance

Personalised recommendations