Journal of Materials Science

, Volume 43, Issue 21, pp 6967–6985 | Cite as

Processing methods to control silk fibroin film biomaterial features

  • Brian D. Lawrence
  • Fiorenzo Omenetto
  • Katherine Chui
  • David L. KaplanEmail author


Control of silk structural and morphological features is reported for fibroin protein films via all aqueous processing, with and without polyethylene oxide (PEO). Silk films with thicknesses from 500 nm to 50 μm were generated with controllable surface morphologies by employing soft-lithography surface patterning or by adjusting PEO concentrations. FTIR analysis indicated that water-annealing, used to cure or set the films, resulted in increased β-sheet and α-helix content within the films. Steam sterilization provided an additional control point by increasing β-sheet content, while reducing random coil and turn structures, yet retaining film transparency and material integrity. Increased PEO concentration used during processing resulted in decreased sizes of surface globule structures, while simultaneously increasing uniformity of these features. The above results indicate that both surface and bulk morphologies and structures can be controlled by adjusting PEO concentration. The combined tool set for controlling silk film geometry and structure provides a foundation for further study of novel silk film biomaterial systems. These silk film biomaterials have potential applicability for a variety of optical and regenerative medicine applications due to their optical clarity, impressive mechanical properties, slow degradability, and biocompatibility.


PDMS Silk Fibroin Random Coil Structure Steam Sterilization Secondary Structure Formation 



The authors thank the NIH P41 Tissue Engineering Resource Center for support for this work. Additionally, the authors would like to thank Mark Cronin-Golomb for technical assistance with AFM imaging, Xiao Hu for technical assistance with FTIR, and Katherine Chui for providing technical assistance in material processing. This material is based upon work supported in part by the U.S. Army Research Laboratory and the U.S. Army Research Office under contract number W911NF-07-1-0618 and by the DARPA-DSO.


  1. 1.
    Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J et al (2003) Biomaterials 24(3):401. doi: CrossRefGoogle Scholar
  2. 2.
    Vepari C, Kaplan DL (2007) Prog Polym Sci (Oxford) 32(8–9):991. doi: CrossRefGoogle Scholar
  3. 3.
    Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC et al (2002) Biomaterials 23:4131. doi: CrossRefGoogle Scholar
  4. 4.
    Meinel L, Fajardo R, Hofmann S, Chen J, Langer R, Snyder B et al (2005) Bone 37:688. doi: CrossRefGoogle Scholar
  5. 5.
    Minoura N, Aiba SI, Gotoh Y, Tsukada M, Imai Y (1995) J Biomed Mater Res 29(10):1215. doi: CrossRefGoogle Scholar
  6. 6.
    Kim UJ, Park J, Joo Kim H, Wada M, Kaplan DL (2005) Biomaterials 26(15):2775. doi: CrossRefGoogle Scholar
  7. 7.
    Wang X, Kim HJ, Xu P, Matsumoto A, Kaplan DL (2005) Langmuir 21(24):11335. doi: CrossRefGoogle Scholar
  8. 8.
    Kardestuncer T, McCarthy MB, Karageorgiou V, Kaplan D, Gronowicz G (2006) Clin Orthop Relat Res 448:234. doi: CrossRefGoogle Scholar
  9. 9.
    Hofmann S, Wong Po Foo CT, Rossetti F, Textor M, Vunjak-Novakovic G, Kaplan DL et al (2006) J Control Release 111(1–2):219. doi: CrossRefGoogle Scholar
  10. 10.
    Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronwicz G et al (2005) Biomaterials 26:147. doi: CrossRefGoogle Scholar
  11. 11.
    Panilaitis B, Altman GH, Chen J, Jin HJ, Karageorgiou V, Kaplan DL (2003) Biomaterials 24(18):3079. doi: CrossRefGoogle Scholar
  12. 12.
    Vunjak-Novakovic G, Altman G, Horan R, Kaplan DL (2004) Annu Rev Biomed Eng 6:131. doi: CrossRefGoogle Scholar
  13. 13.
    Arai T, Freddi G, Innocenti R, Tsukada M (2004) J Appl Polym Sci 91:2383. doi: CrossRefGoogle Scholar
  14. 14.
    Horan RL, Antle K, Collette AL, Wang Y, Huang J, Moreau JE et al (2004) Biomaterials 26:3385. doi: CrossRefGoogle Scholar
  15. 15.
    Horan RL, Antle K, Collette AL, Wang Y, Huang J, Moreau JE et al (2005) Biomaterials 26(17):3385. doi: CrossRefGoogle Scholar
  16. 16.
    Tsukada M, Gotoh Y, Nagura M, Minoura N, Kasai N, Freddi G (1994) J Polym Sci Part Polym Phys 32(5):961. doi: CrossRefGoogle Scholar
  17. 17.
    Jin H-J, Park J, Valluzzi R, Cebe P, Kaplan DL (2004) Biomacromolecules 5:711. doi: CrossRefGoogle Scholar
  18. 18.
    Jin H-J, Park J, Karageorgiou V, Kim U-J, Valluzzi R, Cebe P et al (2005) Adv Funct Mater 15:1241. doi: CrossRefGoogle Scholar
  19. 19.
    Matsumoto A, Chen J, Collette AL, Kim UJ, Altman GH, Cebe P et al (2006) J Phys Chem B 110(43):21630. doi: CrossRefGoogle Scholar
  20. 20.
    Wang X, Kluge JA, Leisk GG, Kaplan DL (2008) Biomaterials 29(8):1054. doi: CrossRefGoogle Scholar
  21. 21.
    Wilson D, Valluzzi R, Kaplan D (2000) Biophys J 78(5):2690CrossRefGoogle Scholar
  22. 22.
    Tretinnikov ON, Tamada Y (2001) Langmuir 17(23):7406. doi: CrossRefGoogle Scholar
  23. 23.
    Motta A, Fambri L, Migliaresi C (2002) Macromol Chem Phys 203(10–11):1658. doi:10.1002/1521-3935(200207)203:10/11<1658::AID-MACP1658>3.0.CO;2-3CrossRefGoogle Scholar
  24. 24.
    Jin H-J, Kaplan DL (2003) Nature 424(28):1057. doi: CrossRefGoogle Scholar
  25. 25.
    Hu X, Kaplan DL, Cebe P (2006) Macromolecules 39:6161. doi: CrossRefGoogle Scholar
  26. 26.
    Park J (2004) Structure and properties of silk fibroin films. Diss. Tufts University, Medford, p 56Google Scholar
  27. 27.
    Agarwal K, Hoagland DA, Farris RJ (1997) J Appl Polym Sci 63(3):401. doi:10.1002/(SICI)1097-4628(19970118)63:3<401::AID-APP17>3.0.CO;2-2CrossRefGoogle Scholar
  28. 28.
    Xia Y, Whitesides GM (1998) Annu Rev Mater Sci 28(1):153. doi: CrossRefGoogle Scholar
  29. 29.
    Lawrence BD, Cronin-Golomb M, Georgakoudi I, Kaplan D, Omenetto FG (2008) Biomacromolecules 9(4):1214. doi: CrossRefGoogle Scholar
  30. 30.
    Dunn GA, Brown AF (1986) J Cell Sci 83:313Google Scholar
  31. 31.
    Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM (1999) Biomaterials 20(23–24):2363. doi: CrossRefGoogle Scholar
  32. 32.
    Teixeira AI, Nealey PF, Murphy CJ (2004) J Biomed Mater Res A 71(3):369. doi: CrossRefGoogle Scholar
  33. 33.
    Liliensiek SJ, Campbell S, Nealey PF, Murphy CJ (2006) J Biomed Mater Res A 79(1):185. doi: CrossRefGoogle Scholar
  34. 34.
    Gupta MK, Khokhar SK, Phillips DM, Sowards LA, Drummy LF, Kadakia MP et al (2007) Langmuir 23(3):1315. doi: CrossRefGoogle Scholar
  35. 35.
    Suh KY, Khademhosseini A, Yang JM, Eng G, Langer R (2004) Adv Mater 16(7):584CrossRefGoogle Scholar
  36. 36.
    Crabb RAB, Chau EP, Evans MC, Barocas VH, Hubel A (2006) Tissue Eng 12(6):1565. doi: CrossRefGoogle Scholar
  37. 37.
    Abrams GA, Schaus SS, Goodman SL, Nealey PF, Murphy CJ (2000) Cornea 19(1):57. doi: CrossRefGoogle Scholar
  38. 38.
    Diehl KA, Foley JD, Nealey PF, Murphy CJ (2005) J Biomed Mater Res A 75(3):603. doi: CrossRefGoogle Scholar
  39. 39.
    Karlon WJ, Hsu PP, Song LI, Chien S, McCulloch AD, Omens JH (1999) Ann Biomed Eng 27(6):712. doi: CrossRefGoogle Scholar
  40. 40.
    Karuri NW, Liliensiek S, Teixeira AI, Abrams G, Campbell S, Nealey PF et al (2004) J Cell Sci 117(15):3153. doi: CrossRefGoogle Scholar
  41. 41.
    Karuri NW, Porri TJ, Albrecht RM, Murphy CJ, Nealey PF (2006) IEEE Trans Nanobiosci 5(4):273. doi: CrossRefGoogle Scholar
  42. 42.
    ImageJ, Wayne Rasband. National Institute of Health, USAGoogle Scholar
  43. 43.
    Arrondo JLR, Muga A, Castresana J, Goñi FM (1993) Prog Biophys Mol Biol 59(1): 23. doi: CrossRefGoogle Scholar
  44. 44.
    Dong A, Huang P, Caughey WS (1990) Biochemistry 29(13):3303. doi: CrossRefGoogle Scholar
  45. 45.
    Speare JO, Rush TS III (2003) Biopolymers 72(3):193. doi: CrossRefGoogle Scholar
  46. 46.
    1.37C, I.V., Wayne Rasband. National Institute of Health, USAGoogle Scholar
  47. 47.
    Vollrath F, Knight DP (2001) Nature 410(6828):541. doi: CrossRefGoogle Scholar
  48. 48.
    Valluzzi R, Jin HJ (2004) Biomacromolecules 5(3):696. doi: CrossRefGoogle Scholar
  49. 49.
    Dongbin Zhao YLZZ (2007) Water 35(1):42Google Scholar
  50. 50.
    Smith CK, Regan L (1997) Acc Chem Res 30(4):153. doi: CrossRefGoogle Scholar
  51. 51.
    Jung C (2000) J Mol Recognit 13(6):325. doi:10.1002/1099-1352(200011/12)13:6<325::AID-JMR507>3.0.CO;2-CCrossRefGoogle Scholar
  52. 52.
    Chen X, Shao Z, Marinkovic NS, Miller LM, Zhou P, Chance MR (2001) Biophys Chem 89(1):25. doi: CrossRefGoogle Scholar
  53. 53.
    Chen X, Shao Z, Knight DP, Vollrath F (2007) Proteins 68(1):223. doi: CrossRefGoogle Scholar
  54. 54.
    Hu X, Kaplan D, Cebe P (2007) Thermochim Acta 461(1–2):137. doi: CrossRefGoogle Scholar
  55. 55.
    Valluzzi R, Szela S, Avtges P, Kirschner D, Kaplan D (1999) J Phys Chem B 103(51):11382. doi: CrossRefGoogle Scholar
  56. 56.
    Asakura T, Kuzuhara A, Tabeta R, Saito H (1985) Macromolecules 18(10):1841. doi: CrossRefGoogle Scholar
  57. 57.
  58. 58.
    Mears DR, Pae KD, Sauer JA (1969) J Appl Phys 40(11):4229. doi: CrossRefGoogle Scholar
  59. 59.
    Nakafuku C (1993) Polymer Communications 34(19):4166. doi: CrossRefGoogle Scholar
  60. 60.
    Nakafuku C, Nishimura K (2003) J Appl Polym Sci 87(12):1962. doi: CrossRefGoogle Scholar
  61. 61.
    Cuniberti C, Ferrando R (1972) Polymer (Guildf) 13(8):379. doi: CrossRefGoogle Scholar
  62. 62.
    Hammouda B, Ho DL, Kline S (2004) Macromolecules 37(18):6932. doi: CrossRefGoogle Scholar
  63. 63.
    Fitton JH, Dalton BA, Beumer G, Johnson G, Griesser HJ, Steele JG (1998) J Biomed Mater Res 42(2):245–257. doi:10.1002/(SICI)1097-4636(199811)42:2<245::AID-JBM9>3.0.CO;2-PCrossRefGoogle Scholar
  64. 64.
    Loesberg WA, te Riet J, van Delft FCMJM, Schön P, Figdor CG, Speller S, van Loon JJWA, Walboomers XF, Jansen JA (2007) Biomaterials 28(27):3944. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Brian D. Lawrence
    • 1
  • Fiorenzo Omenetto
    • 1
  • Katherine Chui
    • 1
  • David L. Kaplan
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringTufts UniversityMedfordUSA

Personalised recommendations