Journal of Materials Science

, Volume 43, Issue 18, pp 6049–6056 | Cite as

AC conduction in amorphous thin films of SnO2

  • M. AnwarEmail author
  • I. M. Ghauri
  • S. A. Siddiqi


Alternating current (a.c.) electrical properties of thermally evaporated amorphous thin films of SnO2 sandwiched between aluminium electrodes have been investigated for temperature during electrical measurements, film thickness, substrate temperature and post-deposition annealing. The a.c. conductivity, σ(ω), is found to vary with frequency according to the relation σ(ω) ∝ ωs, indicating a hopping process at low temperature. The conduction is explained by single polaron hopping process as proposed by Elliott. The increase in electrical conductivity with increase in temperature during electrical measurements is ascribed to the increase in the formation and high mobility of doubly ionized oxygen vacancies. The increase in conductivity with increase in film thickness is caused by the increase in interstitial tin, oxygen vacancies and defects produced due to deviation from stoichiometry. The increase in conductivity with increase in substrate and annealing temperature may be due to the formation of singly or doubly ionized oxygen vacancies and tin species of lower oxidation state. Measurements of capacitance C as a function of frequency and temperature show a decrease in C with increasing frequency and increase in C with increasing temperature. The increase in capacitance in the high-temperature low-frequency region is probably due to space charge polarization induced by the increasing number of free carriers as a result of increasing temperature.


SnO2 Oxygen Vacancy Conduction Mechanism Space Charge Polarization Ionize Oxygen Vacancy 


  1. 1.
    Mott NF (1972) J Non-Cryst Solids 1:1. doi: CrossRefGoogle Scholar
  2. 2.
    Elliott SR (1978) Philos Mag B 37:553. doi: CrossRefGoogle Scholar
  3. 3.
    Austin IG, Mott NF (1969) Adv Phys 18:14. doi: CrossRefGoogle Scholar
  4. 4.
    Pollak M (1971) Philos Mag 23:519. doi: CrossRefGoogle Scholar
  5. 5.
    Shimakawa K (1982) Philos Mag B 46:123. doi: CrossRefGoogle Scholar
  6. 6.
    Omura K, Veluchamy P, Tsuji M, Nishio T, Murojono D (1999) J Electrochem Soc 146:2113. doi: CrossRefGoogle Scholar
  7. 7.
    Laverty SJ, Feng H, Maguire P (1997) J Electrochem Soc 144:2165. doi: CrossRefGoogle Scholar
  8. 8.
    Tadeev AV, Delabouglise G, Labeau M (1998) Mater Sci Eng B 57:76CrossRefGoogle Scholar
  9. 9.
    Ahmed SKF, Khan S, Ghosh PK, Mitra MK, Chattopadhyay KK (2006) J Sol-Gel Sci Technol 39:241. doi: CrossRefGoogle Scholar
  10. 10.
    Suh S, Zhang Z, Chu WK, Hoffman DM (1999) Thin Solid Films 345:240. doi: CrossRefGoogle Scholar
  11. 11.
    Cachet H, Gamard A, Campet G, Jousseaume B, Toupance T (2001) Thin Solid Films 388:41CrossRefGoogle Scholar
  12. 12.
    Mohagheghi MMB, Saremi MS (2004) J Phys D Appl Phys 37:1248. doi: CrossRefGoogle Scholar
  13. 13.
    Ji Z, He Z, Song Y, Liu K, Xiang Y (2004) Thin Solid Films 460:324. doi: CrossRefGoogle Scholar
  14. 14.
    Morais EA, Scalvi LVA, Geraldo V, Scalvi RMF, Ribeiro SJL, Santilli CV et al (2004) J Eur Ceram Soc 24:1857CrossRefGoogle Scholar
  15. 15.
    Kim H, Gilmore CM, Pique A, Horwitz JS, Mattoussi H, Murata H, Kafafi ZH, Chrisey DB (1999) J Appl Phys 86:6451. doi: CrossRefGoogle Scholar
  16. 16.
    Rockenberger J, Felde UZ, Tischer M, Troger L, Haase M, Weller H (2000) J Chem Phys 112:4296. doi: CrossRefGoogle Scholar
  17. 17.
    Banerjee AN, Maity R, Kundoo S, Chattopadhyay KK (2004) Phys Status Solidi (a) 201(5):983. doi: CrossRefGoogle Scholar
  18. 18.
    Tahar RBH, Ban T, Ohya Y, Takahashi Y (1997) J Appl Phys 83(5):2631. doi: CrossRefGoogle Scholar
  19. 19.
    Karapatnitski IA, Mit KA, Mukhamedshina DM, Beisenkhanov NB (2002) Surf Coat Technol 151–152:76. doi: CrossRefGoogle Scholar
  20. 20.
    Lee JS, Choi SC (2005) J Eur Ceram Soc 25:3307. doi: CrossRefGoogle Scholar
  21. 21.
    Anwar M, Ghauri IM, Siddiqi SA (2005) Czech J Phys 55(8):1013. doi: CrossRefGoogle Scholar
  22. 22.
    Anthopoulos TD, Shafai TS (2003) J Appl Phys 94(4):2426. doi: CrossRefGoogle Scholar
  23. 23.
    El-Nahass MM, El-Barry AMA, Rahman SA (2006) Phys Status Solidi (a) 203(2):317. doi: CrossRefGoogle Scholar
  24. 24.
    Kitaneh RML, Saleh AM, Gould RD (2006) Cent Eur Sci J 4(1):87. doi: Google Scholar
  25. 25.
    Mahmood FS, Gould RD (1994) Thin Solid Films 253:529. doi: CrossRefGoogle Scholar
  26. 26.
    Ismail BB, Gould RD (1996) Proc SPIE 2780:46. doi: CrossRefGoogle Scholar
  27. 27.
    Goswami A, Goswami AP (1973) Thin Solid Films 16:175. doi: CrossRefGoogle Scholar
  28. 28.
    Pollak M, Geballe TH (1961) Phys Rev 122:1742. doi: CrossRefGoogle Scholar
  29. 29.
    Anwar M, Ghauri IM, Siddiqi SA (2007) Int J Mod Phys B 21(12):2017CrossRefGoogle Scholar
  30. 30.
    El-Wahabb EA (2005) Acta Phys Pol A 108(6):985CrossRefGoogle Scholar
  31. 31.
    Amma DSD, Vaidyan VK, Manoj PK (2005) Mater Chem Phys 93:194CrossRefGoogle Scholar
  32. 32.
    Jarzebski ZM (1982) Phys Status Solidi (a) 71:13. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Physics DepartmentGovernment CollegeBurewalaPakistan
  2. 2.Centre for Advanced Studies in PhysicsG. C. UniversityLahorePakistan
  3. 3.Centre for Solid State PhysicsUniversity of the PunjabLahorePakistan

Personalised recommendations