Journal of Materials Science

, Volume 43, Issue 18, pp 6038–6048 | Cite as

Detailed investigation of ultrasonic Al–Cu wire-bonds: II. Microstructural evolution during annealing

  • M. Drozdov
  • G. Gur
  • Z. Atzmon
  • W. D. KaplanEmail author


Scanning and transmission electron microscopy were used to study the interface composition and morphology of copper wire-bonds heat-treated at 175 °C for 2, 24, 96, and 200 h in argon. Detailed morphological and compositional characterization of the Al–Cu heat-treated interfaces was conducted on site-specific specimens prepared by focused ion beam milling. Discontinuous intermetallic grains with varying size and morphology were found to grow in regions where they originally nucleated during the bonding process. The main intermetallic phase was Al2Cu, which was found to grow via solid-state diffusion. In specimens heat-treated for 96 and 200 h, the Al4Cu9 phase was also detected. Void formation at the Al–Cu bonds heat-treated up to 200 h was not found to be a source of bond failure.


Select Area Diffraction Select Area Diffraction Pattern Intermetallic Layer Transmission Electron Microscopy Specimen Ball Bonding 



The authors wish to thank A. Berner, Y. Kauffmann, and I. Popov for fruitful discussions. This research was partially supported by the Russell Berrie Nanotechnology Institute at the Technion.


  1. 1.
    Harman G (1997) Wire bonding in microelectronics materials, processes, reliability and yield. McGraw-Hill, New YorkGoogle Scholar
  2. 2.
    Drozdov M, Gur G, Atzmon Z, Kaplan WD (2008) J Mater Sci. doi: CrossRefGoogle Scholar
  3. 3.
    Brydson R, Bruley J, Mullejans H, Scheu C, Ruhle M (1995) Ultramicroscopy 59(1–4):81. doi: CrossRefGoogle Scholar
  4. 4.
    Sadan H, Kaplan WD (2006) J Mater Sci 41(16):5099. doi: CrossRefGoogle Scholar
  5. 5.
    Toyozawa K, Fujita K, Minamide S, Maeda T (1990) IEEE Trans Compon Hybr Manuf Technol 13(4):667. doi: CrossRefGoogle Scholar
  6. 6.
    Singh I Sr, On JY, Levine L Sr (2005) Proc Electron Compon Technol 55(1):843Google Scholar
  7. 7.
    Tan CW, Daud AR (2002) J Mater Sci Mater Electron 13(5):309. doi: CrossRefGoogle Scholar
  8. 8.
    Murali S, Srikanth N, Vath CJ (2003) Mater Charact 50(1):39. doi: CrossRefGoogle Scholar
  9. 9.
    Wulff FW, Breach CD, Saraswati SD, Dittmer KJ (2004) Proceedings of electronics packaging technology confernce, Singapore, 8–10 December, p 348Google Scholar
  10. 10.
    Onuki J, Koizumi M, Araki I (1987) IEEE Trans Compon Hybr Manuf Technol 10(4):550. doi: CrossRefGoogle Scholar
  11. 11.
    Ratchev P, Stoukatch S, Swinnen B (2006) Microelectron Reliab 46(8):1315. doi: CrossRefGoogle Scholar
  12. 12.
    Kim H-J, Lee JY, Paik K-W et al (2003) IEEE Trans Compon Packag Tech 26(2):367. doi: CrossRefGoogle Scholar
  13. 13.
    Murali S, Srikanth N, Wong YM, Vath CJ (2007) J Mater Sci 42(2):615. doi: CrossRefGoogle Scholar
  14. 14.
    Karpel A, Gur G, Atzmon Z, Kaplan WD (2007) J Mater Sci 42(7):2334. doi: CrossRefGoogle Scholar
  15. 15.
    Karpel A, Gur G, Atzmon Z, Kaplan WD (2007) J Mater Sci 42(7):2347. doi: CrossRefGoogle Scholar
  16. 16.
    Murali S, Srikanth N, Vath CJ (2006) J Electron Packag 128(3):192. doi: CrossRefGoogle Scholar
  17. 17.
    Thangadurai P, Lumelsky Y, Silverstein MS, Kaplan WD (2008) Mater Charact. doi: CrossRefGoogle Scholar
  18. 18.
    Murray JL (1985) Int Met Rev 30(5):211Google Scholar
  19. 19.
    Hill A, Wallach ER (1989) Acta Metall 37(9):2425. doi: CrossRefGoogle Scholar
  20. 20.
    Takahashi Y, Inoue K, Nishiguchi K (1993) Acta Metall Mater 41(11):3077. doi: CrossRefGoogle Scholar
  21. 21.
    Hamm RA, Vandenberg JM (1984) J Appl Phys 56(2):293. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Materials EngineeringTechnion—Israel Institute of TechnologyHaifaIsrael
  2. 2.Kulicke & Soffa Bonding ToolsYokneam EliteIsrael

Personalised recommendations