Journal of Materials Science

, Volume 43, Issue 21, pp 6986–6991 | Cite as

Adsorption of cholate anions on layered double hydroxides: effects of temperature, ionic strength and pH

  • J. F. Naime FilhoEmail author
  • F. Silvério
  • M. J. dos Reis
  • J. B. Valim


Layered Double Hydroxides are a class of materials that can be described as positively charged planar layers consisting of divalent and trivalent cations in the center of edge-sharing octahedra. The positive charge in the LDH layers must be compensated by anion intercalation. These materials have applications that include adsorption and/or sorption of anionic species. Cholic acid is one of the main acids produced by the liver. It promotes transport of lipids through aqueous systems. This work reports on the adsorption of Cholic acid anions in MgAl–CO3–LDH taking ionic strength, pH, and temperature effects into account. The adsorbent was characterized by different techniques. Cholate anion adsorption was performed at two different temperatures (298 and 323 K), two different ionic strength conditions (0.0 and 0.1 M of NaCl), and two different pH values (7.0 and 10.0). The results show that the sorption of Cholate anions in calcined LDH can remove a considerable amount of these anions from the medium. Cholate anion adsorption in the LDH with no calcining also occurs, but at a lower amount.


High Performance Liquid Chromatography Layered Double Hydroxide Cholic Acid Trivalent Cation PXRD Pattern 


  1. 1.
    Roik NV, Belyakova LA (2006) Russ J Phys Chem 80:1105. doi: CrossRefGoogle Scholar
  2. 2.
    Carey FA (1992) Organic chemistry, 2nd edn. 116 p Google Scholar
  3. 3.
  4. 4.
    Takehira K, Kawabata T, Shishido S, Murakami K, Ohi T, Shoro D et al (2005) J Catal 231:92. doi: CrossRefGoogle Scholar
  5. 5.
    Aisawa S, Kudo H, Hoshi T, Takahashi S, Hirahara H, Umetsu Y et al (2004) J Solid State Chem 177:3987. doi: CrossRefGoogle Scholar
  6. 6.
    Pavan PC, Crepaldi EL, Gomes GD, Valim JB (1999) Coll And Surf A-Physicochem 154:399CrossRefGoogle Scholar
  7. 7.
    dos Reis MJ, Silvério F, Tronto J, Valim JB (2004) J Phys Chem Solids 65:487. doi: CrossRefGoogle Scholar
  8. 8.
    Pavan PC, Gomes GD, Valim JB (1998) Microporous Mesoporous Mater 21:659. doi: CrossRefGoogle Scholar
  9. 9.
    Pavan PC, Crepaldi EL, Valim JB (2000) J Coll Int Sci 229:346. doi: CrossRefGoogle Scholar
  10. 10.
    Pavan PC, Cardoso LP, Crepaldi EL, Valim JB (2000) Stud Surf Sci Catal 129:443. doi: CrossRefGoogle Scholar
  11. 11.
    Nhlapo N, Motumi T, Landman E (2008) J Math Sci 43:1033–1043. doi: CrossRefGoogle Scholar
  12. 12.
    Silverio F, dos Reis MJ, Tronto J, Valim JB (2008) J Math Sci 43:434–439. doi: CrossRefGoogle Scholar
  13. 13.
    Delorme F, Seron A, Gautier A (2007) J Math Sci 42:5799–5804. doi: CrossRefGoogle Scholar
  14. 14.
    Cavani F, Trifiro F, Vaccari A (1991) Catal Today 11:173. doi: CrossRefGoogle Scholar
  15. 15.
    Reichle WT, Kang SY, Everhardt DS (1986) J Catal 101:352. doi: CrossRefGoogle Scholar
  16. 16.
    Yan S, Luo G, Wag Y, Cheng Y (2006) J Pharm Biomed Anal 40:891. doi: CrossRefGoogle Scholar
  17. 17.
    Silverio F, dos Reis MJ, Tronto J, Valim JB (2007) J Mat Sci. doi: CrossRefGoogle Scholar
  18. 18.
    Morrison R, Boyd R (1994) Organic chemistry, 4th edn. 970 pGoogle Scholar
  19. 19.
    West AR (1987) Solid state chemistry and its applications. ChicesterGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • J. F. Naime Filho
    • 1
    Email author
  • F. Silvério
    • 1
  • M. J. dos Reis
    • 1
  • J. B. Valim
    • 1
  1. 1.Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão PretoUniversidade de São PauloRibeirao PretoBrazil

Personalised recommendations